yolov3_loss_op.h 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
D
dengkaipeng 已提交
30 31
static inline bool LessEqualZero(T x) {
  return x < 1e-6;
32 33
}

34
template <typename T>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
static T SCE(T x, T label) {
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

template <typename T>
static T L1Loss(T x, T y) {
  return std::abs(y - x);
}

template <typename T>
static T SCEGrad(T x, T label) {
  return 1.0 / (1.0 + std::exp(-x)) - label;
}

template <typename T>
static T L1LossGrad(T x, T y) {
  return x > y ? 1.0 : -1.0;
}

D
dengkaipeng 已提交
54 55
static int GetMaskIndex(std::vector<int> mask, int val) {
  for (size_t i = 0; i < mask.size(); i++) {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    if (mask[i] == val) {
      return i;
    }
  }
  return -1;
}

template <typename T>
struct Box {
  float x, y, w, h;
};

template <typename T>
static inline T sigmoid(T x) {
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
74 75 76
static inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
                                int j, int an_idx, int grid_size,
                                int input_size, int index, int stride) {
77 78 79 80 81 82 83 84 85
  Box<T> b;
  b.x = (i + sigmoid<T>(x[index])) / grid_size;
  b.y = (j + sigmoid<T>(x[index + stride])) / grid_size;
  b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
  b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
  return b;
}

template <typename T>
D
dengkaipeng 已提交
86
static inline Box<T> GetGtBox(const T* gt, int batch, int max_boxes, int idx) {
87 88 89 90 91 92 93 94 95
  Box<T> b;
  b.x = gt[(batch * max_boxes + idx) * 4];
  b.y = gt[(batch * max_boxes + idx) * 4 + 1];
  b.w = gt[(batch * max_boxes + idx) * 4 + 2];
  b.h = gt[(batch * max_boxes + idx) * 4 + 3];
  return b;
}

template <typename T>
D
dengkaipeng 已提交
96
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
97 98 99 100 101 102 103 104 105 106
  T l1 = c1 - w1 / 2.0;
  T l2 = c2 - w2 / 2.0;
  T left = l1 > l2 ? l1 : l2;
  T r1 = c1 + w1 / 2.0;
  T r2 = c2 + w2 / 2.0;
  T right = r1 < r2 ? r1 : r2;
  return right - left;
}

template <typename T>
D
dengkaipeng 已提交
107 108 109
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
  T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
  T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
110 111 112 113 114
  T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
  T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
  return inter_area / union_area;
}

D
dengkaipeng 已提交
115 116
static inline int GetEntryIndex(int batch, int an_idx, int hw_idx, int an_num,
                                int an_stride, int stride, int entry) {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
static void CalcBoxLocationLoss(T* loss, const T* input, Box<T> gt,
                                std::vector<int> anchors, int an_idx,
                                int box_idx, int gi, int gj, int grid_size,
                                int input_size, int stride) {
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

  T scale = 2.0 - gt.w * gt.h;
  loss[0] += SCE<T>(input[box_idx], tx) * scale;
  loss[0] += SCE<T>(input[box_idx + stride], ty) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 2 * stride], tw) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 3 * stride], th) * scale;
}

template <typename T>
static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
                                    Box<T> gt, std::vector<int> anchors,
                                    int an_idx, int box_idx, int gi, int gj,
                                    int grid_size, int input_size, int stride) {
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

  T scale = 2.0 - gt.w * gt.h;
  input_grad[box_idx] = SCEGrad<T>(input[box_idx], tx) * scale * loss;
  input_grad[box_idx + stride] =
      SCEGrad<T>(input[box_idx + stride], ty) * scale * loss;
  input_grad[box_idx + 2 * stride] =
      L1LossGrad<T>(input[box_idx + 2 * stride], tw) * scale * loss;
  input_grad[box_idx + 3 * stride] =
      L1LossGrad<T>(input[box_idx + 3 * stride], th) * scale * loss;
}

template <typename T>
static inline void CalcLabelLoss(T* loss, const T* input, const int index,
                                 const int label, const int class_num,
                                 const int stride) {
  for (int i = 0; i < class_num; i++) {
    loss[0] += SCE<T>(input[index + i * stride], (i == label) ? 1.0 : 0.0);
  }
}

template <typename T>
static inline void CalcLabelLossGrad(T* input_grad, const T loss,
                                     const T* input, const int index,
                                     const int label, const int class_num,
                                     const int stride) {
  for (int i = 0; i < class_num; i++) {
    input_grad[index + i * stride] =
        SCEGrad<T>(input[index + i * stride], (i == label) ? 1.0 : 0.0) * loss;
  }
}

template <typename T>
static inline void CalcObjnessLoss(T* loss, const T* input, const int* objness,
                                   const int n, const int an_num, const int h,
                                   const int w, const int stride,
                                   const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
          int obj = objness[k * w + l];
          if (obj >= 0) {
            loss[i] += SCE<T>(input[k * w + l], static_cast<T>(obj));
          }
        }
      }
      objness += stride;
      input += an_stride;
    }
  }
}

template <typename T>
static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
                                       const T* input, const int* objness,
                                       const int n, const int an_num,
                                       const int h, const int w,
                                       const int stride, const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
          int obj = objness[k * w + l];
          if (obj >= 0) {
            input_grad[k * w + l] =
                SCEGrad<T>(input[k * w + l], static_cast<T>(obj)) * loss[i];
          }
        }
      }
      objness += stride;
      input += an_stride;
      input_grad += an_stride;
    }
  }
}

222
template <typename T>
223 224 225 226
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
227 228
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
229
    auto* loss = ctx.Output<Tensor>("Loss");
230
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
231
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
232 233
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
234
    int downsample = ctx.Attr<int>("downsample");
235 236 237 238 239

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
240 241 242
    const int mask_num = anchor_mask.size();
    const int b = gt_box->dims()[1];
    int input_size = downsample * h;
243

244 245 246
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
247
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
D
dengkaipeng 已提交
248
    memset(loss_data, 0, loss->numel() * sizeof(T));
249 250 251 252 253 254 255 256 257 258 259 260 261 262

    Tensor objness;
    int* objness_data =
        objness.mutable_data<int>({n, mask_num, h, w}, ctx.GetPlace());
    memset(objness_data, 0, objness.numel() * sizeof(int));

    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

    for (int i = 0; i < n; i++) {
      for (int j = 0; j < mask_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
            int box_idx =
D
dengkaipeng 已提交
263 264 265
                GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
            Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
                                     h, input_size, box_idx, stride);
266 267
            T best_iou = 0;
            for (int t = 0; t < b; t++) {
D
dengkaipeng 已提交
268 269
              Box<T> gt = GetGtBox(gt_box_data, i, b, t);
              if (LessEqualZero<T>(gt.w) || LessEqualZero<T>(gt.h)) {
270 271
                continue;
              }
D
dengkaipeng 已提交
272
              T iou = CalcBoxIoU(pred, gt);
273 274 275 276 277 278 279 280 281 282 283 284 285
              if (iou > best_iou) {
                best_iou = iou;
              }
            }

            if (best_iou > ignore_thresh) {
              int obj_idx = (i * mask_num + j) * stride + k * w + l;
              objness_data[obj_idx] = -1;
            }
          }
        }
      }
      for (int t = 0; t < b; t++) {
D
dengkaipeng 已提交
286 287
        Box<T> gt = GetGtBox(gt_box_data, i, b, t);
        if (LessEqualZero<T>(gt.w) || LessEqualZero<T>(gt.h)) {
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
          continue;
        }
        int gi = static_cast<int>(gt.x * w);
        int gj = static_cast<int>(gt.y * h);
        Box<T> gt_shift = gt;
        gt_shift.x = 0.0;
        gt_shift.y = 0.0;
        T best_iou = 0.0;
        int best_n = 0;
        for (int an_idx = 0; an_idx < an_num; an_idx++) {
          Box<T> an_box;
          an_box.x = 0.0;
          an_box.y = 0.0;
          an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
          an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
D
dengkaipeng 已提交
303
          float iou = CalcBoxIoU<T>(an_box, gt_shift);
304 305 306 307 308 309 310
          // TO DO: iou > 0.5 ?
          if (iou > best_iou) {
            best_iou = iou;
            best_n = an_idx;
          }
        }

D
dengkaipeng 已提交
311
        int mask_idx = GetMaskIndex(anchor_mask, best_n);
312
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
313 314
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
315 316 317 318 319 320 321
          CalcBoxLocationLoss<T>(loss_data + i, input_data, gt, anchors, best_n,
                                 box_idx, gi, gj, h, input_size, stride);

          int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
          objness_data[obj_idx] = 1;

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
322 323
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
324 325 326 327 328 329 330 331
          CalcLabelLoss<T>(loss_data + i, input_data, label_idx, label,
                           class_num, stride);
        }
      }
    }

    CalcObjnessLoss<T>(loss_data, input_data + 4 * stride, objness_data, n,
                       mask_num, h, w, stride, an_stride);
332 333 334
  }
};

335
template <typename T>
336 337 338
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
339
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
340 341
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
342 343
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
344
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
345
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
346 347
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
348
    int downsample = ctx.Attr<int>("downsample");
349 350 351 352 353 354

    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
355 356 357 358 359 360 361 362
    const int mask_num = anchor_mask.size();
    const int b = gt_box->dims()[1];
    int input_size = downsample * h;

    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
    const T* loss_grad_data = loss_grad->data<T>();
363 364
    T* input_grad_data =
        input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    memset(input_grad_data, 0, input_grad->numel() * sizeof(T));

    Tensor objness;
    int* objness_data =
        objness.mutable_data<int>({n, mask_num, h, w}, ctx.GetPlace());
    memset(objness_data, 0, objness.numel() * sizeof(int));

    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

    for (int i = 0; i < n; i++) {
      for (int j = 0; j < mask_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
            int box_idx =
D
dengkaipeng 已提交
380 381 382
                GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
            Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
                                     h, input_size, box_idx, stride);
383 384
            T best_iou = 0;
            for (int t = 0; t < b; t++) {
D
dengkaipeng 已提交
385 386
              Box<T> gt = GetGtBox(gt_box_data, i, b, t);
              if (LessEqualZero<T>(gt.w) || LessEqualZero<T>(gt.h)) {
387 388
                continue;
              }
D
dengkaipeng 已提交
389
              T iou = CalcBoxIoU(pred, gt);
390 391 392 393 394 395 396 397 398 399 400 401 402
              if (iou > best_iou) {
                best_iou = iou;
              }
            }

            if (best_iou > ignore_thresh) {
              int obj_idx = (i * mask_num + j) * stride + k * w + l;
              objness_data[obj_idx] = -1;
            }
          }
        }
      }
      for (int t = 0; t < b; t++) {
D
dengkaipeng 已提交
403 404
        Box<T> gt = GetGtBox(gt_box_data, i, b, t);
        if (LessEqualZero<T>(gt.w) || LessEqualZero<T>(gt.h)) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
          continue;
        }
        int gi = static_cast<int>(gt.x * w);
        int gj = static_cast<int>(gt.y * h);
        Box<T> gt_shift = gt;
        gt_shift.x = 0.0;
        gt_shift.y = 0.0;
        T best_iou = 0.0;
        int best_n = 0;
        for (int an_idx = 0; an_idx < an_num; an_idx++) {
          Box<T> an_box;
          an_box.x = 0.0;
          an_box.y = 0.0;
          an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
          an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
D
dengkaipeng 已提交
420
          float iou = CalcBoxIoU<T>(an_box, gt_shift);
421 422 423 424 425 426 427
          // TO DO: iou > 0.5 ?
          if (iou > best_iou) {
            best_iou = iou;
            best_n = an_idx;
          }
        }

D
dengkaipeng 已提交
428
        int mask_idx = GetMaskIndex(anchor_mask, best_n);
429
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
430 431
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
432 433 434 435 436 437 438 439
          CalcBoxLocationLossGrad<T>(input_grad_data, loss_grad_data[i],
                                     input_data, gt, anchors, best_n, box_idx,
                                     gi, gj, h, input_size, stride);

          int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
          objness_data[obj_idx] = 1;

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
440 441
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
442 443 444 445 446 447 448 449 450
          CalcLabelLossGrad<T>(input_grad_data, loss_grad_data[i], input_data,
                               label_idx, label, class_num, stride);
        }
      }
    }

    CalcObjnessLossGrad<T>(input_grad_data + 4 * stride, loss_grad_data,
                           input_data + 4 * stride, objness_data, n, mask_num,
                           h, w, stride, an_stride);
451 452 453 454 455
  }
};

}  // namespace operators
}  // namespace paddle