coco_eval.py 20.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os
import sys
import json
import cv2
import numpy as np

import logging
logger = logging.getLogger(__name__)

__all__ = [
30 31 32 33 34 35
    'bbox_eval',
    'mask_eval',
    'bbox2out',
    'mask2out',
    'get_category_info',
    'proposal_eval',
36
    'cocoapi_eval',
37 38 39
]


W
wangguanzhong 已提交
40 41 42 43 44 45 46
def clip_bbox(bbox, im_size=None):
    h = 1. if im_size is None else im_size[0]
    w = 1. if im_size is None else im_size[1]
    xmin = max(min(bbox[0], w), 0.)
    ymin = max(min(bbox[1], h), 0.)
    xmax = max(min(bbox[2], w), 0.)
    ymax = max(min(bbox[3], h), 0.)
47 48 49
    return xmin, ymin, xmax, ymax


50 51 52 53 54 55 56 57 58 59 60 61
def proposal_eval(results, anno_file, outfile, max_dets=(100, 300, 1000)):
    assert 'proposal' in results[0]
    assert outfile.endswith('.json')

    xywh_results = proposal2out(results)
    assert len(
        xywh_results) > 0, "The number of valid proposal detected is zero.\n \
        Please use reasonable model and check input data."

    with open(outfile, 'w') as f:
        json.dump(xywh_results, f)

62
    cocoapi_eval(outfile, 'proposal', anno_file=anno_file, max_dets=max_dets)
63 64 65
    # flush coco evaluation result
    sys.stdout.flush()

66 67 68 69 70

def bbox_eval(results,
              anno_file,
              outfile,
              with_background=True,
W
wangguanzhong 已提交
71 72
              is_bbox_normalized=False,
              save_only=False):
73 74
    assert 'bbox' in results[0]
    assert outfile.endswith('.json')
G
Guanghua Yu 已提交
75
    from pycocotools.coco import COCO
76 77 78 79 80 81 82 83 84 85

    coco_gt = COCO(anno_file)
    cat_ids = coco_gt.getCatIds()

    # when with_background = True, mapping category to classid, like:
    #   background:0, first_class:1, second_class:2, ...
    clsid2catid = dict(
        {i + int(with_background): catid
         for i, catid in enumerate(cat_ids)})

86 87 88
    xywh_results = bbox2out(
        results, clsid2catid, is_bbox_normalized=is_bbox_normalized)

89 90 91 92 93
    if len(xywh_results) == 0:
        logger.warning("The number of valid bbox detected is zero.\n \
            Please use reasonable model and check input data.\n \
            stop eval!")
        return [0.0]
94 95 96
    with open(outfile, 'w') as f:
        json.dump(xywh_results, f)

W
wangguanzhong 已提交
97 98 99 100 101
    if save_only:
        logger.info('The bbox result is saved to {} and do not '
                    'evaluate the mAP.'.format(outfile))
        return

102
    map_stats = cocoapi_eval(outfile, 'bbox', coco_gt=coco_gt)
103 104
    # flush coco evaluation result
    sys.stdout.flush()
105
    return map_stats
106 107


W
wangguanzhong 已提交
108 109 110 111 112 113
def mask_eval(results,
              anno_file,
              outfile,
              resolution,
              thresh_binarize=0.5,
              save_only=False):
G
Guanghua Yu 已提交
114 115 116 117
    """
    Format the output of mask and get mask ap by coco api evaluation.
    It will be used in Mask-RCNN.
    """
118 119
    assert 'mask' in results[0]
    assert outfile.endswith('.json')
G
Guanghua Yu 已提交
120
    from pycocotools.coco import COCO
121 122 123 124

    coco_gt = COCO(anno_file)
    clsid2catid = {i + 1: v for i, v in enumerate(coco_gt.getCatIds())}

W
wangguanzhong 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    segm_results = []
    for t in results:
        im_ids = np.array(t['im_id'][0])
        bboxes = t['bbox'][0]
        lengths = t['bbox'][1][0]
        masks = t['mask']
        if bboxes.shape == (1, 1) or bboxes is None:
            continue
        if len(bboxes.tolist()) == 0:
            continue
        s = 0
        for i in range(len(lengths)):
            num = lengths[i]
            im_id = int(im_ids[i][0])
            clsid_scores = bboxes[s:s + num][:, 0:2]
            mask = masks[s:s + num]
W
wangguanzhong 已提交
141
            s += num
W
wangguanzhong 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154
            for j in range(num):
                clsid, score = clsid_scores[j].tolist()
                catid = int(clsid2catid[clsid])
                segm = mask[j]
                segm['counts'] = segm['counts'].decode('utf8')
                coco_res = {
                    'image_id': im_id,
                    'category_id': int(catid),
                    'segmentation': segm,
                    'score': score
                }
                segm_results.append(coco_res)

155 156 157 158
    if len(segm_results) == 0:
        logger.warning("The number of valid mask detected is zero.\n \
            Please use reasonable model and check input data.")
        return
159

160 161 162
    with open(outfile, 'w') as f:
        json.dump(segm_results, f)

W
wangguanzhong 已提交
163 164 165 166 167
    if save_only:
        logger.info('The mask result is saved to {} and do not '
                    'evaluate the mAP.'.format(outfile))
        return

168 169
    cocoapi_eval(outfile, 'segm', coco_gt=coco_gt)

170

G
Guanghua Yu 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
def segm_eval(results, anno_file, outfile, save_only=False):
    """
    Format the output of segmentation, category_id and score in mask.josn, and
    get mask ap by coco api evaluation. It will be used in instance segmentation
    networks, such as: SOLOv2.
    """
    assert 'segm' in results[0]
    assert outfile.endswith('.json')
    from pycocotools.coco import COCO
    coco_gt = COCO(anno_file)
    clsid2catid = {i: v for i, v in enumerate(coco_gt.getCatIds())}
    segm_results = []
    for t in results:
        im_id = int(t['im_id'][0][0])
        segs = t['segm']
        for mask in segs:
            catid = int(clsid2catid[mask[0]])
            masks = mask[1]
            mask_score = masks[1]
            segm = masks[0]
            segm['counts'] = segm['counts'].decode('utf8')
            coco_res = {
                'image_id': im_id,
                'category_id': catid,
                'segmentation': segm,
                'score': mask_score
            }
            segm_results.append(coco_res)

    if len(segm_results) == 0:
        logger.warning("The number of valid mask detected is zero.\n \
            Please use reasonable model and check input data.")
        return

    with open(outfile, 'w') as f:
        json.dump(segm_results, f)

    if save_only:
        logger.info('The mask result is saved to {} and do not '
                    'evaluate the mAP.'.format(outfile))
        return

    map_stats = cocoapi_eval(outfile, 'segm', coco_gt=coco_gt)
    return map_stats


217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
def cocoapi_eval(jsonfile,
                 style,
                 coco_gt=None,
                 anno_file=None,
                 max_dets=(100, 300, 1000)):
    """
    Args:
        jsonfile: Evaluation json file, eg: bbox.json, mask.json.
        style: COCOeval style, can be `bbox` , `segm` and `proposal`.
        coco_gt: Whether to load COCOAPI through anno_file,
                 eg: coco_gt = COCO(anno_file)
        anno_file: COCO annotations file.
        max_dets: COCO evaluation maxDets.
    """
    assert coco_gt != None or anno_file != None
G
Guanghua Yu 已提交
232 233 234
    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval

235 236
    if coco_gt == None:
        coco_gt = COCO(anno_file)
237
    logger.info("Start evaluate...")
238 239 240 241 242 243 244 245 246 247
    coco_dt = coco_gt.loadRes(jsonfile)
    if style == 'proposal':
        coco_eval = COCOeval(coco_gt, coco_dt, 'bbox')
        coco_eval.params.useCats = 0
        coco_eval.params.maxDets = list(max_dets)
    else:
        coco_eval = COCOeval(coco_gt, coco_dt, style)
    coco_eval.evaluate()
    coco_eval.accumulate()
    coco_eval.summarize()
248
    return coco_eval.stats
249

250

251 252 253 254 255
def proposal2out(results, is_bbox_normalized=False):
    xywh_res = []
    for t in results:
        bboxes = t['proposal'][0]
        lengths = t['proposal'][1][0]
W
wangguanzhong 已提交
256 257
        im_ids = np.array(t['im_id'][0]).flatten()
        assert len(lengths) == im_ids.size
258 259 260 261 262 263
        if bboxes.shape == (1, 1) or bboxes is None:
            continue

        k = 0
        for i in range(len(lengths)):
            num = lengths[i]
W
wangguanzhong 已提交
264
            im_id = int(im_ids[i])
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
            for j in range(num):
                dt = bboxes[k]
                xmin, ymin, xmax, ymax = dt.tolist()

                if is_bbox_normalized:
                    xmin, ymin, xmax, ymax = \
                            clip_bbox([xmin, ymin, xmax, ymax])
                    w = xmax - xmin
                    h = ymax - ymin
                else:
                    w = xmax - xmin + 1
                    h = ymax - ymin + 1

                bbox = [xmin, ymin, w, h]
                coco_res = {
                    'image_id': im_id,
                    'category_id': 1,
                    'bbox': bbox,
                    'score': 1.0
                }
                xywh_res.append(coco_res)
                k += 1
    return xywh_res


290
def bbox2out(results, clsid2catid, is_bbox_normalized=False):
291 292 293 294 295 296 297
    """
    Args:
        results: request a dict, should include: `bbox`, `im_id`,
                 if is_bbox_normalized=True, also need `im_shape`.
        clsid2catid: class id to category id map of COCO2017 dataset.
        is_bbox_normalized: whether or not bbox is normalized.
    """
298 299 300
    xywh_res = []
    for t in results:
        bboxes = t['bbox'][0]
W
wangguanzhong 已提交
301
        if len(t['bbox'][1]) == 0: continue
302
        lengths = t['bbox'][1][0]
W
wangguanzhong 已提交
303
        im_ids = np.array(t['im_id'][0]).flatten()
W
wangguanzhong 已提交
304
        if bboxes.shape == (1, 1) or bboxes is None or len(bboxes) == 0:
305 306 307 308 309
            continue

        k = 0
        for i in range(len(lengths)):
            num = lengths[i]
W
wangguanzhong 已提交
310
            im_id = int(im_ids[i])
311 312 313
            for j in range(num):
                dt = bboxes[k]
                clsid, score, xmin, ymin, xmax, ymax = dt.tolist()
W
wangguanzhong 已提交
314
                if clsid < 0: continue
315
                catid = (clsid2catid[int(clsid)])
316 317 318 319 320 321

                if is_bbox_normalized:
                    xmin, ymin, xmax, ymax = \
                            clip_bbox([xmin, ymin, xmax, ymax])
                    w = xmax - xmin
                    h = ymax - ymin
322 323
                    im_shape = t['im_shape'][0][i].tolist()
                    im_height, im_width = int(im_shape[0]), int(im_shape[1])
324 325 326 327
                    xmin *= im_width
                    ymin *= im_height
                    w *= im_width
                    h *= im_height
328
                else:
W
wangguanzhong 已提交
329 330 331 332 333
                    # for yolov4
                    # w = xmax - xmin
                    # h = ymax - ymin
                    w = xmax - xmin + 1
                    h = ymax - ymin + 1
334 335 336 337 338 339 340 341 342 343 344 345 346 347

                bbox = [xmin, ymin, w, h]
                coco_res = {
                    'image_id': im_id,
                    'category_id': catid,
                    'bbox': bbox,
                    'score': score
                }
                xywh_res.append(coco_res)
                k += 1
    return xywh_res


def mask2out(results, clsid2catid, resolution, thresh_binarize=0.5):
G
Guanghua Yu 已提交
348
    import pycocotools.mask as mask_util
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    scale = (resolution + 2.0) / resolution

    segm_res = []

    # for each batch
    for t in results:
        bboxes = t['bbox'][0]

        lengths = t['bbox'][1][0]
        im_ids = np.array(t['im_id'][0])
        if bboxes.shape == (1, 1) or bboxes is None:
            continue
        if len(bboxes.tolist()) == 0:
            continue

        masks = t['mask'][0]

        s = 0
        # for each sample
        for i in range(len(lengths)):
            num = lengths[i]
            im_id = int(im_ids[i][0])
J
jerrywgz 已提交
371
            im_shape = t['im_shape'][0][i]
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

            bbox = bboxes[s:s + num][:, 2:]
            clsid_scores = bboxes[s:s + num][:, 0:2]
            mask = masks[s:s + num]
            s += num

            im_h = int(im_shape[0])
            im_w = int(im_shape[1])

            expand_bbox = expand_boxes(bbox, scale)
            expand_bbox = expand_bbox.astype(np.int32)

            padded_mask = np.zeros(
                (resolution + 2, resolution + 2), dtype=np.float32)

            for j in range(num):
                xmin, ymin, xmax, ymax = expand_bbox[j].tolist()
                clsid, score = clsid_scores[j].tolist()
                clsid = int(clsid)
                padded_mask[1:-1, 1:-1] = mask[j, clsid, :, :]

                catid = clsid2catid[clsid]

                w = xmax - xmin + 1
                h = ymax - ymin + 1
                w = np.maximum(w, 1)
                h = np.maximum(h, 1)

                resized_mask = cv2.resize(padded_mask, (w, h))
                resized_mask = np.array(
                    resized_mask > thresh_binarize, dtype=np.uint8)
                im_mask = np.zeros((im_h, im_w), dtype=np.uint8)

                x0 = min(max(xmin, 0), im_w)
                x1 = min(max(xmax + 1, 0), im_w)
                y0 = min(max(ymin, 0), im_h)
                y1 = min(max(ymax + 1, 0), im_h)

                im_mask[y0:y1, x0:x1] = resized_mask[(y0 - ymin):(y1 - ymin), (
                    x0 - xmin):(x1 - xmin)]
                segm = mask_util.encode(
                    np.array(
                        im_mask[:, :, np.newaxis], order='F'))[0]
                catid = clsid2catid[clsid]
                segm['counts'] = segm['counts'].decode('utf8')
                coco_res = {
                    'image_id': im_id,
                    'category_id': catid,
                    'segmentation': segm,
                    'score': score
                }
                segm_res.append(coco_res)
    return segm_res


G
Guanghua Yu 已提交
427 428 429 430 431 432
def segm2out(results, clsid2catid, thresh_binarize=0.5):
    import pycocotools.mask as mask_util
    segm_res = []

    # for each batch
    for t in results:
G
Guanghua Yu 已提交
433
        segms = t['segm'][0].astype(np.uint8)
G
Guanghua Yu 已提交
434 435 436 437 438 439 440 441 442 443 444 445
        clsid_labels = t['cate_label'][0]
        clsid_scores = t['cate_score'][0]
        lengths = segms.shape[0]
        im_id = int(t['im_id'][0][0])
        im_shape = t['im_shape'][0][0]
        if lengths == 0 or segms is None:
            continue
        # for each sample
        for i in range(lengths - 1):
            im_h = int(im_shape[0])
            im_w = int(im_shape[1])

G
Guanghua Yu 已提交
446
            clsid = int(clsid_labels[i]) + 1
G
Guanghua Yu 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
            catid = clsid2catid[clsid]
            score = clsid_scores[i]
            mask = segms[i]
            segm = mask_util.encode(
                np.array(
                    mask[:, :, np.newaxis], order='F'))[0]
            segm['counts'] = segm['counts'].decode('utf8')
            coco_res = {
                'image_id': im_id,
                'category_id': catid,
                'segmentation': segm,
                'score': score
            }
            segm_res.append(coco_res)
    return segm_res


464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
def expand_boxes(boxes, scale):
    """
    Expand an array of boxes by a given scale.
    """
    w_half = (boxes[:, 2] - boxes[:, 0]) * .5
    h_half = (boxes[:, 3] - boxes[:, 1]) * .5
    x_c = (boxes[:, 2] + boxes[:, 0]) * .5
    y_c = (boxes[:, 3] + boxes[:, 1]) * .5

    w_half *= scale
    h_half *= scale

    boxes_exp = np.zeros(boxes.shape)
    boxes_exp[:, 0] = x_c - w_half
    boxes_exp[:, 2] = x_c + w_half
    boxes_exp[:, 1] = y_c - h_half
    boxes_exp[:, 3] = y_c + h_half

    return boxes_exp


def get_category_info(anno_file=None,
                      with_background=True,
                      use_default_label=False):
    if use_default_label or anno_file is None \
            or not os.path.exists(anno_file):
        logger.info("Not found annotation file {}, load "
                    "coco17 categories.".format(anno_file))
        return coco17_category_info(with_background)
    else:
        logger.info("Load categories from {}".format(anno_file))
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        if anno_file.endswith('.json'):
            return get_category_info_from_anno(anno_file, with_background)
        else:
            return get_category_info_from_txt(anno_file, with_background)


def get_category_info_from_txt(anno_file, with_background=True):
    """
    Get class id to category id map and category id
    to category name map from txt file.

    args:
        anno_file (str): label txt file path.
        with_background (bool, default True):
            whether load background as class 0.
    """
    with open(anno_file, "r") as f:
        catid_list = f.readlines()
    clsid2catid = {}
    catid2name = {}
    for i, catid in enumerate(catid_list):
        catid = catid.strip('\n\t\r')
        clsid2catid[i + int(with_background)] = i + 1
        catid2name[i + int(with_background)] = catid
    if with_background:
        clsid2catid.update({0: 0})
        catid2name.update({0: 'background'})
    return clsid2catid, catid2name
523 524 525 526 527 528 529 530 531 532 533 534


def get_category_info_from_anno(anno_file, with_background=True):
    """
    Get class id to category id map and category id
    to category name map from annotation file.

    Args:
        anno_file (str): annotation file path
        with_background (bool, default True):
            whether load background as class 0.
    """
G
Guanghua Yu 已提交
535
    from pycocotools.coco import COCO
536 537 538 539 540 541 542
    coco = COCO(anno_file)
    cats = coco.loadCats(coco.getCatIds())
    clsid2catid = {
        i + int(with_background): cat['id']
        for i, cat in enumerate(cats)
    }
    catid2name = {cat['id']: cat['name'] for cat in cats}
543 544 545
    if with_background:
        clsid2catid.update({0: 0})
        catid2name.update({0: 'background'})
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
    return clsid2catid, catid2name


def coco17_category_info(with_background=True):
    """
    Get class id to category id map and category id
    to category name map of COCO2017 dataset

    Args:
        with_background (bool, default True):
            whether load background as class 0.
    """
    clsid2catid = {
        1: 1,
        2: 2,
        3: 3,
        4: 4,
        5: 5,
        6: 6,
        7: 7,
        8: 8,
        9: 9,
        10: 10,
        11: 11,
        12: 13,
        13: 14,
        14: 15,
        15: 16,
        16: 17,
        17: 18,
        18: 19,
        19: 20,
        20: 21,
        21: 22,
        22: 23,
        23: 24,
        24: 25,
        25: 27,
        26: 28,
        27: 31,
        28: 32,
        29: 33,
        30: 34,
        31: 35,
        32: 36,
        33: 37,
        34: 38,
        35: 39,
        36: 40,
        37: 41,
        38: 42,
        39: 43,
        40: 44,
        41: 46,
        42: 47,
        43: 48,
        44: 49,
        45: 50,
        46: 51,
        47: 52,
        48: 53,
        49: 54,
        50: 55,
        51: 56,
        52: 57,
        53: 58,
        54: 59,
        55: 60,
        56: 61,
        57: 62,
        58: 63,
        59: 64,
        60: 65,
        61: 67,
        62: 70,
        63: 72,
        64: 73,
        65: 74,
        66: 75,
        67: 76,
        68: 77,
        69: 78,
        70: 79,
        71: 80,
        72: 81,
        73: 82,
        74: 84,
        75: 85,
        76: 86,
        77: 87,
        78: 88,
        79: 89,
        80: 90
    }

    catid2name = {
        0: 'background',
        1: 'person',
        2: 'bicycle',
        3: 'car',
        4: 'motorcycle',
        5: 'airplane',
        6: 'bus',
        7: 'train',
        8: 'truck',
        9: 'boat',
        10: 'traffic light',
        11: 'fire hydrant',
        13: 'stop sign',
        14: 'parking meter',
        15: 'bench',
        16: 'bird',
        17: 'cat',
        18: 'dog',
        19: 'horse',
        20: 'sheep',
        21: 'cow',
        22: 'elephant',
        23: 'bear',
        24: 'zebra',
        25: 'giraffe',
        27: 'backpack',
        28: 'umbrella',
        31: 'handbag',
        32: 'tie',
        33: 'suitcase',
        34: 'frisbee',
        35: 'skis',
        36: 'snowboard',
        37: 'sports ball',
        38: 'kite',
        39: 'baseball bat',
        40: 'baseball glove',
        41: 'skateboard',
        42: 'surfboard',
        43: 'tennis racket',
        44: 'bottle',
        46: 'wine glass',
        47: 'cup',
        48: 'fork',
        49: 'knife',
        50: 'spoon',
        51: 'bowl',
        52: 'banana',
        53: 'apple',
        54: 'sandwich',
        55: 'orange',
        56: 'broccoli',
        57: 'carrot',
        58: 'hot dog',
        59: 'pizza',
        60: 'donut',
        61: 'cake',
        62: 'chair',
        63: 'couch',
        64: 'potted plant',
        65: 'bed',
        67: 'dining table',
        70: 'toilet',
        72: 'tv',
        73: 'laptop',
        74: 'mouse',
        75: 'remote',
        76: 'keyboard',
        77: 'cell phone',
        78: 'microwave',
        79: 'oven',
        80: 'toaster',
        81: 'sink',
        82: 'refrigerator',
        84: 'book',
        85: 'clock',
        86: 'vase',
        87: 'scissors',
        88: 'teddy bear',
        89: 'hair drier',
        90: 'toothbrush'
    }

    if not with_background:
        clsid2catid = {k - 1: v for k, v in clsid2catid.items()}
G
Guanghua Yu 已提交
727
        catid2name.pop(0)
728 729
    else:
        clsid2catid.update({0: 0})
730

731
    return clsid2catid, catid2name