未验证 提交 376c25c0 编写于 作者: W Wenyu 提交者: GitHub

update readme, add yoloe (#5703)

上级 98d57aa2
......@@ -17,13 +17,13 @@
## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> 产品动态
- 🔥 **2022.3.24:PaddleDetection发布[release/2.4版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)**
- 发布高精度云边一体SOTA目标检测模型[PP-YOLOE](configs/ppyoloe),COCO数据集精度51.4%,V100预测速度78.1 FPS,支持混合精度训练,训练较PP-YOLOv2加速33%,全系列多尺度模型,满足不同硬件算力需求,可适配服务器、边缘端GPU及其他服务器端AI加速卡。
- 发布边缘端和CPU端超轻量SOTA目标检测模型[PP-PicoDet增强版](configs/picodet),精度提升2%左右,CPU预测速度提升63%,新增参数量0.7M的PicoDet-XS模型,提供模型稀疏化和量化功能,便于模型加速,各类硬件无需单独开发后处理模块,降低部署门槛。
- 发布实时行人分析工具[PP-Human](deploy/pphuman),支持行人跟踪、人流量统计、人体属性识别与摔倒检测四大能力,基于真实场景数据特殊优化,精准识别各类摔倒姿势,适应不同环境背景、光线及摄像角度。
- 2021.11.03: PaddleDetection发布[release/2.3版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3)
- 发布轻量级检测特色模型⚡[PP-PicoDet](configs/picodet),0.99m的参数量可实现精度30+mAP、速度150FPS。
- 发布轻量级关键点特色模型⚡[PP-TinyPose](configs/keypoint/tiny_pose),单人场景FP16推理可达122FPS、51.8AP,具有精度高速度快、检测人数无限制、微小目标效果好的优势。
- 发布实时跟踪系统[PP-Tracking](deploy/pptracking),覆盖单、多镜头下行人、车辆、多类别跟踪,对小目标、密集型特殊优化,提供人、车流量技术解决方案。
......@@ -32,13 +32,13 @@
- 新增轻量化关键点模型[Lite HRNet](configs/keypoint)关键点模型并支持Paddle Lite部署。
- 2021.08.10: PaddleDetection发布[release/2.2版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2)
- 发布Transformer检测系列模型,包括[DETR](configs/detr), [Deformable DETR](configs/deformable_detr), [Sparse RCNN](configs/sparse_rcnn)
- 新增Dark HRNet关键点模型和MPII数据集[关键点模型](configs/keypoint)
- 新增[人头](configs/mot/headtracking21)[车辆](configs/mot/vehicle)跟踪垂类模型。
- 2021.05.20: PaddleDetection发布[release/2.1版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1)
- 新增[关键点检测](configs/keypoint),模型包括HigherHRNet,HRNet。
- 新增[多目标跟踪](configs/mot)能力,模型包括DeepSORT,JDE,FairMOT。
- 发布PPYOLO系列模型压缩模型,新增[ONNX模型导出教程](deploy/EXPORT_ONNX_MODEL.md)
......@@ -71,7 +71,7 @@
- 如果你发现任何PaddleDetection存在的问题或者是建议, 欢迎通过[GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues)给我们提issues。
- 欢迎加入PaddleDetection QQ、微信(添加并回复小助手“检测”)用户群
<div align="center">
<img src="https://user-images.githubusercontent.com/48054808/157800129-2f9a0b72-6bb8-4b10-8310-93ab1639253f.jpg" width = "200" />
<img src="https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png" width = "200" />
......@@ -244,6 +244,7 @@
- `Cascade-Faster-RCNN``Cascade-Faster-RCNN-ResNet50vd-DCN`,PaddleDetection将其优化到COCO数据mAP为47.8%时推理速度为20FPS
- `PP-YOLO`在COCO数据集精度45.9%,Tesla V100预测速度72.9FPS,精度速度均优于[YOLOv4](https://arxiv.org/abs/2004.10934)
- `PP-YOLO v2`是对`PP-YOLO`模型的进一步优化,在COCO数据集精度49.5%,Tesla V100预测速度68.9FPS
- `PP-YOLOE`是对`PP-YOLO v2`模型的进一步优化,在COCO数据集精度51.4%,Tesla V100预测速度78.1FPS
- 图中模型均可在[模型库](#模型库)中获取
各移动端模型在COCO数据集上精度mAP和高通骁龙865处理器上预测速度(FPS)对比图。
......@@ -269,16 +270,16 @@
### 进阶教程
- 参数配置
- [RCNN参数说明](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation.md)
- [PP-YOLO参数说明](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation.md)
- 模型压缩(基于[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim))
- [剪裁/量化/蒸馏教程](configs/slim)
- [推理部署](deploy/README.md)
- [模型导出教程](deploy/EXPORT_MODEL.md)
- [Paddle Inference部署](deploy/README.md)
- [Python端推理部署](deploy/python)
......@@ -289,7 +290,7 @@
- [推理benchmark](deploy/BENCHMARK_INFER.md)
- 进阶开发
- [数据处理模块](docs/advanced_tutorials/READER.md)
- [新增检测模型](docs/advanced_tutorials/MODEL_TECHNICAL.md)
......
......@@ -17,7 +17,7 @@ English | [简体中文](README_cn.md)
## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> Latest News
- 🔥 **2022.3.24:PaddleDetection [release 2.4 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)**
- Release GPU SOTA object detection series models (s/m/l/x) [PP-YOLOE](configs/ppyoloe), achieving mAP as 51.4% on COCO test dataset and 78.1 FPS on Nvidia V100, supporting AMP training and its training speed is 33% faster than PP-YOLOv2.
- Release enhanced models of [PP-PicoDet](configs/picodet), including PP-PicoDet-XS model with 0.7M parameters, its mAP promoted ~2% on COCO, inference speed accelerated 63% on CPU, and post-processing integrated into the network to optimize deployment pipeline.
- Release real-time human analysis tool [PP-Human](deploy/pphuman), which is based on data from real-life situations, supporting pedestrian detection, attribute recognition, human tracking, multi-camera tracking, human statistics and action recognition.
......@@ -46,20 +46,20 @@ PaddleDetection is an end-to-end object detection development kit based on Paddl
## <img src="https://user-images.githubusercontent.com/48054808/157799599-e6a66855-bac6-4e75-b9c0-96e13cb9612f.png" width="20"/> Features
- **Rich Models**
- **Rich Models**
PaddleDetection provides rich of models, including **250+ pre-trained models** such as **object detection**, **instance segmentation**, **face detection**, **keypoint detection**, **multi-object tracking** and etc, covering a variety of **global competition champion** schemes.
- **Highly Flexible**
Components are designed to be modular. Model architectures, as well as data preprocess pipelines and optimization strategies, can be easily customized with simple configuration changes.
- **Production Ready**
- **Production Ready**
From data augmentation, constructing models, training, compression, depolyment, get through end to end, and complete support for multi-architecture, multi-device deployment for **cloud and edge device**.
- **High Performance**
- **High Performance**
Based on the high performance core of PaddlePaddle, advantages of training speed and memory occupation are obvious. FP16 training and multi-machine training are supported as well.
## <img title="" src="https://user-images.githubusercontent.com/48054808/157800467-2a9946ad-30d1-49a9-b9db-ba33413d9c90.png" alt="" width="20"> Community
......@@ -67,7 +67,7 @@ PaddleDetection is an end-to-end object detection development kit based on Paddl
- If you have any problem or suggestion on PaddleDetection, please send us issues through [GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues).
- Welcome to Join PaddleDetection QQ Group and Wechat Group (reply "Det").
<div align="center">
<img src="https://user-images.githubusercontent.com/48054808/157800129-2f9a0b72-6bb8-4b10-8310-93ab1639253f.jpg" width = "200" />
<img src="https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png" width = "200" />
......@@ -243,7 +243,7 @@ The relationship between COCO mAP and FPS on Tesla V100 of representative models
- `PP-YOLO` achieves mAP of 45.9% on COCO and 72.9FPS on Tesla V100. Both precision and speed surpass [YOLOv4](https://arxiv.org/abs/2004.10934)
- `PP-YOLO v2` is optimized version of `PP-YOLO` which has mAP of 49.5% and 68.9FPS on Tesla V100
- `PP-YOLOE` is optimized version of `PP-YOLO v2` which has mAP of 51.4% and 78.1FPS on Tesla V100
- All these models can be get in [Model Zoo](#ModelZoo)
The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of representative mobile side models.
......@@ -268,16 +268,16 @@ The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of represen
### Advanced Tutorials
- Parameter configuration
- [Parameter configuration for RCNN model](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation_en.md)
- [Parameter configuration for PP-YOLO model](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation_en.md)
- Model Compression(Based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim))
- [Prune/Quant/Distill](configs/slim)
- Inference and deployment
- [Export model for inference](deploy/EXPORT_MODEL_en.md)
- [Paddle Inference](deploy/README_en.md)
- [Python inference](deploy/python)
......@@ -289,7 +289,7 @@ The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of represen
- [Exporting to ONNX and using OpenVINO for inference](docs/advanced_tutorials/openvino_inference/README.md)
- Advanced development
- [New data augmentations](docs/advanced_tutorials/READER_en.md)
- [New detection algorithms](docs/advanced_tutorials/MODEL_TECHNICAL.md)
......
docs/images/fps_map.png

376.4 KB | W: | H:

docs/images/fps_map.png

428.6 KB | W: | H:

docs/images/fps_map.png
docs/images/fps_map.png
docs/images/fps_map.png
docs/images/fps_map.png
  • 2-up
  • Swipe
  • Onion skin
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册