parallel_executor.cc 8.9 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Q
qiaolongfei 已提交
16

C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
Y
Yu Yang 已提交
20

Y
Yu Yang 已提交
21
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
22
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
23
#endif
Y
Yang Yang 已提交
24

Y
Yu Yang 已提交
25 26
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
27
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
28

Y
Yang Yang 已提交
29
namespace paddle {
Y
Yu Yang 已提交
30 31
namespace framework {

Y
Yu Yang 已提交
32 33 34
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
35
      : places_(places) {}
Y
Yu Yang 已提交
36 37 38 39

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
40
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
41

Y
Yu Yang 已提交
42
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
43
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
44
#endif
45 46

  std::vector<std::tuple<std::string, proto::VarType::Type, bool>> var_types_;
47
  bool own_local_scope;
Y
Yu Yang 已提交
48 49
};

50 51 52 53
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
54
ParallelExecutor::ParallelExecutor(
55 56
    size_t num_threads, bool use_event,
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
57
    const std::unordered_set<std::string> &params,
58 59
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
Yu Yang 已提交
60
    Scope *scope, const std::vector<Scope *> &local_scopes, bool allow_op_delay,
61 62
    bool use_default_grad_scale, bool balance_parameter_opt_between_cards,
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
63
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
64
  member_->global_scope_ = scope;
Y
Yu Yang 已提交
65

66
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
67
  // Create local scopes
68
  if (local_scopes.empty()) {
69
    member_->own_local_scope = true;
Y
Yu Yang 已提交
70 71
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
72
      member_->local_scopes_.emplace_back(&scope->NewScope());
73 74
    }
  } else {
75
    member_->own_local_scope = false;
76 77
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
78
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
79
    }
Y
Yu Yang 已提交
80 81
  }

Y
Yu Yang 已提交
82 83
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
T
typhoonzero 已提交
84
  auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
T
typhoonzero 已提交
85 86 87 88 89 90
  ncclUniqueId *nccl_id = nullptr;
  if (nccl_id_var != nullptr) {
    nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
  }
  member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
      member_->places_, nccl_id, num_trainers, trainer_id));
Y
Yu Yang 已提交
91
#endif
92 93 94
  if (platform::is_gpu_place(places[0]) && member_->local_scopes_.size() != 1 &&
      local_scopes.empty()) {  // Is CUDA
    BCastParamsToGPUs(bcast_vars);
Y
Yu Yang 已提交
95
  }
Y
Yu Yang 已提交
96
// Startup Program has been run. All local scopes has correct parameters.
Y
Yu Yang 已提交
97

Y
Yu Yang 已提交
98 99 100
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
101 102
  details::MultiDevSSAGraphBuilder builder(
      member_->places_, loss_var_name, params, member_->local_scopes_,
C
chengduoZH 已提交
103 104
      member_->nccl_ctxs_.get(), use_default_grad_scale,
      balance_parameter_opt_between_cards);
Y
Yu Yang 已提交
105
#else
C
chengduoZH 已提交
106 107 108
  details::MultiDevSSAGraphBuilder builder(
      member_->places_, loss_var_name, params, member_->local_scopes_,
      use_default_grad_scale, balance_parameter_opt_between_cards);
Y
Yu Yang 已提交
109
#endif
Y
Yu Yang 已提交
110
  auto graph = builder.Build(main_program);
Y
Yu Yang 已提交
111

Y
Yu Yang 已提交
112
  member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
X
Xin Pan 已提交
113 114
      num_threads, use_event, member_->local_scopes_, places, std::move(graph),
      allow_op_delay));
Y
Yu Yang 已提交
115

Y
Yu Yang 已提交
116
  // Step 3. Create vars in each scope;
117 118 119
  for (auto *var : main_program.Block(0).AllVars()) {
    member_->var_types_.emplace_back(var->Name(), var->GetType(),
                                     var->Persistable());
Y
Yu Yang 已提交
120
  }
Y
Yu Yang 已提交
121 122 123
}

void ParallelExecutor::BCastParamsToGPUs(
124
    const std::unordered_set<std::string> &vars) const {
Y
Yu Yang 已提交
125
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
126
  auto *main_scope = member_->local_scopes_[0];
Y
Yu Yang 已提交
127

128 129
  for (auto &var : vars) {
    auto *main_var = main_scope->FindVar(var);
J
JiayiFeng 已提交
130
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      platform::NCCLGroupGuard guard;
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
        if (i == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
146
          auto local_scope = member_->local_scopes_[i];
147
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
148
          t->Resize(dims);
149
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
150
        }
151 152 153 154 155 156 157 158 159 160 161 162
        auto &nccl_ctx = member_->nccl_ctxs_->at(place);
        platform::dynload::ncclBcast(buffer, numel, data_type, 0,
                                     nccl_ctx.comm_, nccl_ctx.stream());
      }
    } else {
      platform::CPUPlace cpu;
      for (size_t i = 1; i < member_->places_.size(); ++i) {
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
        t->Resize(dims);
        t->mutable_data(cpu, main_tensor.type());
        paddle::framework::TensorCopy(main_tensor, cpu, t);
Y
Yu Yang 已提交
163
      }
Y
Stash  
Yu Yang 已提交
164
    }
Y
Yu Yang 已提交
165
    member_->nccl_ctxs_->WaitAll();
Y
Stash  
Yu Yang 已提交
166
  }
Y
Yu Yang 已提交
167 168 169 170
#else
  PADDLE_THROW("Not compiled with CUDA");
#endif
}
Y
Yu Yang 已提交
171

Y
Yu Yang 已提交
172 173
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
174
  platform::RecordBlock b(0);
175
  // Create local scopes.
Y
Yu Yang 已提交
176 177 178
  for (auto it = member_->local_scopes_.rbegin();
       it != member_->local_scopes_.rend(); ++it) {
    auto &scope = *it;
179 180 181 182 183 184 185 186 187 188 189 190 191
    Scope &local_scope = scope->NewScope();
    *scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>() =
        &local_scope;

    for (auto &name_type_pair : member_->var_types_) {
      if (scope->FindVar(std::get<0>(name_type_pair)) != nullptr) {
        continue;
      }

      if (std::get<2>(name_type_pair)) {  // Persistable
        InitializeVariable(scope->Var(std::get<0>(name_type_pair)),
                           std::get<1>(name_type_pair));
      } else {
Y
update  
Yu Yang 已提交
192
        InitializeVariable(local_scope.Var(std::get<0>(name_type_pair)),
193 194 195 196 197
                           std::get<1>(name_type_pair));
      }
    }
  }

Y
Yu Yang 已提交
198 199 200
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
201 202 203 204 205 206 207 208 209 210

  // Wait All computational streams
  for (auto p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  for (auto &scope : member_->local_scopes_) {
    auto &local_scope =
        *scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>();
    scope->DeleteScope(local_scope);
  }
Y
Yu Yang 已提交
211
}
Y
Yu Yang 已提交
212

Y
Yu Yang 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
232 233 234 235 236
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
237 238
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
239
      auto t =
Y
Yu Yang 已提交
240
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
241 242
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
243 244 245 246
    }
  }
}

247 248 249 250 251 252 253 254
ParallelExecutor::~ParallelExecutor() {
  if (member_->own_local_scope) {
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
      member_->global_scope_->DeleteScope(member_->local_scopes_[i]);
    }
  }
}

Y
Yu Yang 已提交
255
}  // namespace framework
Y
Yang Yang 已提交
256
}  // namespace paddle