layer.h 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24
#include <memory>  // NOLINT
M
minqiyang 已提交
25

26 27 28 29
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
30
#include "paddle/fluid/platform/device_context.h"
M
minqiyang 已提交
31
#include "paddle/fluid/operators/math/math_function.h"
32

M
minqiyang 已提交
33 34
#include "paddle/fluid/imperative/type_defs.h"

35 36 37
namespace paddle {
namespace imperative {

M
minqiyang 已提交
38 39
class VarBase;

X
Xin Pan 已提交
40 41
namespace py = ::pybind11;

X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
68
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

M
minqiyang 已提交
89 90
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
91 92 93 94 95
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
96

97 98
class OpBase;

M
minqiyang 已提交
99 100 101 102 103
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
104 105
class VarBase {
 public:
M
minqiyang 已提交
106
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
107

M
minqiyang 已提交
108 109 110 111
  explicit VarBase(bool stop_gradient)
      : VarBase(new framework::Variable(),
                stop_gradient ? nullptr : new VarBase(true), stop_gradient) {}

M
minqiyang 已提交
112
  VarBase(framework::Variable* var, VarBase* grad)
M
minqiyang 已提交
113 114 115 116
      : VarBase(var, grad, false) {}

 private:
  VarBase(framework::Variable* var, VarBase* grad, bool stop_gradient)
X
Xin Pan 已提交
117
      : var_desc_(nullptr),
X
polish  
Xin Pan 已提交
118 119
        var_(var),
        grads_(grad),
X
Xin Pan 已提交
120 121
        stop_gradient_(stop_gradient),
        pre_op_(nullptr),
M
minqiyang 已提交
122
        pre_op_out_idx_(-1) {}
123

M
minqiyang 已提交
124
 public:
M
minqiyang 已提交
125 126 127 128 129 130 131 132 133
  virtual ~VarBase() {
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
134

M
minqiyang 已提交
135 136
  inline OpBase* PreOp() const { return pre_op_; }
  inline int PreOpOutIdx() const { return pre_op_out_idx_; }
X
Xin Pan 已提交
137

M
minqiyang 已提交
138 139 140 141
  inline void SetStopGradient(bool stop_gradient) {
    stop_gradient_ = stop_gradient;
  }
  inline bool IsStopGradient() const { return stop_gradient_; }
142

X
Xin Pan 已提交
143
  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
M
minqiyang 已提交
144
                  int pre_op_out_idx, bool pre_op_stop_gradient) {
X
Xin Pan 已提交
145 146 147
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
M
minqiyang 已提交
148 149 150
    if (pre_op_stop_gradient) {
      stop_gradient_ = pre_op_stop_gradient;
    }
X
Xin Pan 已提交
151 152
  }

M
minqiyang 已提交
153 154 155
  void RunBackward();

  void ClearGradient();
X
Xin Pan 已提交
156

M
minqiyang 已提交
157
  framework::LoDTensor& GradValue();
158

M
minqiyang 已提交
159 160
  std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
                                      const bool blocking) const;
M
minqiyang 已提交
161

M
minqiyang 已提交
162 163 164 165 166 167 168
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

169
  framework::VarDesc* var_desc_;
M
minqiyang 已提交
170

M
minqiyang 已提交
171 172
  framework::Variable* var_;
  VarBase* grads_;
173

X
Xin Pan 已提交
174
 private:
175
  bool stop_gradient_;
X
Xin Pan 已提交
176 177 178
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
179 180
};

M
minqiyang 已提交
181 182 183
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
184 185
class OpBase {
 public:
X
Xin Pan 已提交
186 187 188
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
M
minqiyang 已提交
189
        backward_id_(-1),
P
Paddle CI 已提交
190
        place_(platform::CPUPlace()) {}
191 192

  virtual ~OpBase() {
X
Xin Pan 已提交
193 194 195
    for (framework::OpDesc* desc : grad_op_descs_) {
      delete desc;
    }
196 197
  }

X
Xin Pan 已提交
198
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
199

X
polish  
Xin Pan 已提交
200 201
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
202
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
203
  int forward_id_;
X
polish  
Xin Pan 已提交
204

X
Xin Pan 已提交
205
  // When has backward, one of `grad_op_descs_` or `backward_id_` is set,
X
polish  
Xin Pan 已提交
206
  // not both.
X
polish  
Xin Pan 已提交
207
  // Note: each fwd op corresponds to a vector of bwd ops.
X
Xin Pan 已提交
208
  std::vector<framework::OpDesc*> grad_op_descs_;
X
Xin Pan 已提交
209
  int backward_id_;
X
Xin Pan 已提交
210

P
Paddle CI 已提交
211
  platform::Place place_;
M
minqiyang 已提交
212

M
minqiyang 已提交
213 214 215
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
216
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
217

X
polish  
Xin Pan 已提交
218
  // Inputs to a vector of bwd ops.
X
Xin Pan 已提交
219
  std::vector<framework::VariableValueMap> grad_input_vars_;
X
polish  
Xin Pan 已提交
220
  // Outputs to a vector of bwd ops.
X
Xin Pan 已提交
221
  std::vector<framework::VariableValueMap> grad_output_vars_;
X
polish  
Xin Pan 已提交
222

223 224 225 226 227 228 229 230 231 232 233
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
234
};
235

X
Xin Pan 已提交
236 237 238 239
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
240 241
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
242

X
Xin Pan 已提交
243
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
244

X
polish  
Xin Pan 已提交
245 246
  static int NumFuncs();

X
Xin Pan 已提交
247
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
248 249
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
250 251
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
252

X
polish  
Xin Pan 已提交
253 254 255
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
256 257 258 259
};

}  // namespace imperative
}  // namespace paddle