layer.h 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17
#include <map>
18 19
#include <string>
#include <vector>
X
Xin Pan 已提交
20 21 22
#include "pybind11/pybind11.h"

#include "Python.h"
23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace imperative {

X
Xin Pan 已提交
31 32
namespace py = ::pybind11;

X
Xin Pan 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
59
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
Xin Pan 已提交
85

86 87 88 89
class OpBase;

class VarBase {
 public:
M
minqiyang 已提交
90 91 92 93 94 95 96 97 98
  VarBase()
      : pre_op_(nullptr),
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
        var_(new framework::Variable()),
        grads_(new framework::Variable()),
        stop_gradient_(false) {}

  explicit VarBase(bool stop_gradient)
99 100 101
      : pre_op_(nullptr),
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
Xin Pan 已提交
102
        var_(new framework::Variable()),
103
        grads_(new framework::Variable()),
104
        stop_gradient_(stop_gradient) {}
105

M
minqiyang 已提交
106
  virtual ~VarBase() {}
107

X
Xin Pan 已提交
108
  void RunBackward();
109 110 111

  framework::LoDTensor& Grad();

M
minqiyang 已提交
112 113 114 115 116 117 118
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

119
  OpBase* pre_op_;
X
Xin Pan 已提交
120
  std::string pre_op_out_name_;
121 122 123 124 125
  int pre_op_out_idx_;

  framework::VarDesc* var_desc_;
  framework::Variable* var_;
  framework::Variable* grads_;
126 127

  bool stop_gradient_;
128 129 130 131
};

class OpBase {
 public:
X
Xin Pan 已提交
132 133 134 135 136
  OpBase()
      : op_desc_(nullptr),
        grad_op_desc_(nullptr),
        forward_id_(-1),
        backward_id_(-1) {}
137 138 139 140 141

  virtual ~OpBase() {
    if (grad_op_desc_) delete grad_op_desc_;
  }

X
Xin Pan 已提交
142
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
143 144 145

  framework::OpDesc* op_desc_;
  framework::OpDesc* grad_op_desc_;
X
Xin Pan 已提交
146

X
Xin Pan 已提交
147 148 149
  int forward_id_;
  int backward_id_;

X
Xin Pan 已提交
150 151
  std::map<std::string, std::vector<VarBase*>> input_vars_;
  std::map<std::string, std::vector<VarBase*>> output_vars_;
X
Xin Pan 已提交
152 153
  std::map<std::string, std::vector<OpBase*>> pre_ops_;
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
154

X
Xin Pan 已提交
155 156
  std::map<std::string, std::vector<framework::Variable*>> grad_input_vars_;
  std::map<std::string, std::vector<framework::Variable*>> grad_output_vars_;
157 158 159 160 161 162 163 164 165 166 167
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
168
};
169

X
Xin Pan 已提交
170
static void CallPythonFunc(const py::object& callable,
X
Xin Pan 已提交
171
                           const std::vector<framework::LoDTensor>& ins,
X
Xin Pan 已提交
172
                           std::vector<VarBase*>* outs) {
X
Xin Pan 已提交
173 174 175 176 177 178
  py::gil_scoped_acquire guard;
  py::tuple in_args(ins.size());
  for (size_t i = 0; i < ins.size(); ++i) {
    in_args[i] = ins[i].IsInitialized() ? py::cast(ins[i]) : py::cast(nullptr);
  }

X
Xin Pan 已提交
179
  // TODO(panyx0718): Who owns the returned LoDTensor.
X
Xin Pan 已提交
180
  auto ret = callable(in_args);
X
Xin Pan 已提交
181 182 183 184 185 186 187
  auto ret_tuple = py::cast<py::tuple>(ret);
  size_t ret_num = py::len(ret_tuple);
  for (size_t i = 0; i < ret_num; ++i) {
    try {
      auto* py_out_tensor = py::cast<framework::LoDTensor*>(ret_tuple[i]);
      PADDLE_ENFORCE_NOT_NULL(py_out_tensor,
                              "Output tensor %d should not be nullptr", i);
X
Xin Pan 已提交
188 189 190 191 192
      VarBase* var = new VarBase();
      auto* tensor = var->var_->GetMutable<framework::LoDTensor>();
      tensor->ShareDataWith(*py_out_tensor);
      tensor->set_lod(py_out_tensor->lod());
      outs->push_back(var);
X
Xin Pan 已提交
193 194 195 196 197 198 199 200 201 202
    } catch (py::cast_error&) {
      PADDLE_THROW("The %d-th output must be LoDTensor", i);
    }
  }
}

class PyLayer {
 public:
  virtual ~PyLayer() {}

X
Xin Pan 已提交
203
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
204

X
Xin Pan 已提交
205 206
  static std::vector<VarBase*> Apply(int func_id,
                                     const std::vector<VarBase>& inputs);
207 208 209 210
};

}  // namespace imperative
}  // namespace paddle