infer.py 30.6 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
Q
qingqing01 已提交
18 19 20 21
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
22
import math
Q
qingqing01 已提交
23 24 25 26
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
27 28 29 30 31
import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

32
from benchmark_utils import PaddleInferBenchmark
33
from picodet_postprocess import PicoDetPostProcess
34
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, decode_image
W
wangguanzhong 已提交
35
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
G
Guanghua Yu 已提交
36
from visualize import visualize_box_mask
37
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
38

Q
qingqing01 已提交
39 40
# Global dictionary
SUPPORT_MODELS = {
J
JYChen 已提交
41 42 43
    'YOLO', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet', 'S2ANet', 'JDE',
    'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet', 'TOOD',
    'StrongBaseline', 'STGCN'
Q
qingqing01 已提交
44 45 46
}


W
wangguanzhong 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
64 65 66
class Detector(object):
    """
    Args:
67
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
68
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
69
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
70
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
71
        batch_size (int): size of pre batch in inference
72 73 74
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
75 76 77 78
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
79
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
80 81
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
Q
qingqing01 已提交
82 83
    """

W
wangguanzhong 已提交
84 85 86 87 88 89 90 91 92 93 94 95
    def __init__(
            self,
            model_dir,
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
96
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
97 98 99
            output_dir='output',
            threshold=0.5, ):
        self.pred_config = self.set_config(model_dir)
100
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
101 102
            model_dir,
            run_mode=run_mode,
103
            batch_size=batch_size,
Q
qingqing01 已提交
104
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
105
            device=device,
106
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
107 108
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
109
            trt_opt_shape=trt_opt_shape,
110 111
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
112 113
            enable_mkldnn=enable_mkldnn,
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16)
G
Guanghua Yu 已提交
114 115
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
116 117 118 119 120 121
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
122

C
cnn 已提交
123
    def preprocess(self, image_list):
Q
qingqing01 已提交
124 125 126 127 128
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
129 130 131 132

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
133
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
134 135 136
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
137 138 139 140 141
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

Q
qingqing01 已提交
142 143
        return inputs

W
wangguanzhong 已提交
144
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
145
        # postprocess output of predictor
W
wangguanzhong 已提交
146 147 148 149 150 151
        np_boxes_num = result['boxes_num']
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result
Q
qingqing01 已提交
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    def filter_box(self, result, threshold):
        np_boxes_num = result['boxes_num']
        boxes = result['boxes']
        start_idx = 0
        filter_boxes = []
        filter_num = []
        for i in range(len(np_boxes_num)):
            boxes_num = np_boxes_num[i]
            boxes_i = boxes[start_idx:start_idx + boxes_num, :]
            idx = boxes_i[:, 1] > threshold
            filter_boxes_i = boxes_i[idx, :]
            filter_boxes.append(filter_boxes_i)
            filter_num.append(filter_boxes_i.shape[0])
            start_idx += boxes_num
        boxes = np.concatenate(filter_boxes)
        filter_num = np.array(filter_num)
        filter_res = {'boxes': boxes, 'boxes_num': filter_num}
        return filter_res

W
wangguanzhong 已提交
172
    def predict(self, repeats=1):
Q
qingqing01 已提交
173 174
        '''
        Args:
W
wangguanzhong 已提交
175
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
176
        Returns:
W
wangguanzhong 已提交
177
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
178
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
179
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
180
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
181
        '''
W
wangguanzhong 已提交
182
        # model prediction
W
wangguanzhong 已提交
183
        np_boxes, np_masks = None, None
Q
qingqing01 已提交
184 185 186 187 188
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
189 190
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
191
            if self.pred_config.mask:
Q
qingqing01 已提交
192 193
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
            results[k] = np.concatenate(v)
        return results
Q
qingqing01 已提交
208

W
wangguanzhong 已提交
209 210
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
211

W
wangguanzhong 已提交
212 213 214 215 216 217
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True):
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
218
        results = []
W
wangguanzhong 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)

            results.append(result)
            if visual:
                print('Test iter {}'.format(i))

        results = self.merge_batch_result(results)
Q
qingqing01 已提交
277 278
        return results

W
wangguanzhong 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
J
JYChen 已提交
296
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
W
wangguanzhong 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
            results = self.predict_image([frame], visual=False)

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
319

Q
qingqing01 已提交
320

G
Guanghua Yu 已提交
321 322 323 324
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
325
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
326
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
327
        batch_size (int): size of pre batch in inference
328 329 330
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
331 332 333 334
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
335
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
336 337 338
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
339 340
    """

W
wangguanzhong 已提交
341 342
    def __init__(
            self,
G
Guanghua Yu 已提交
343
            model_dir,
W
wangguanzhong 已提交
344 345 346 347 348 349 350 351 352
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
353
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
354 355 356 357 358
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
359
            run_mode=run_mode,
360
            batch_size=batch_size,
361 362
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
363
            trt_opt_shape=trt_opt_shape,
364 365
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
366
            enable_mkldnn=enable_mkldnn,
367
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
368 369
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
370

W
wangguanzhong 已提交
371
    def predict(self, repeats=1):
G
Guanghua Yu 已提交
372 373
        '''
        Args:
W
wangguanzhong 已提交
374
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
375
        Returns:
W
wangguanzhong 已提交
376
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
377 378
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
379 380 381 382 383
        '''
        np_label, np_score, np_segms = None, None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
384 385
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
386 387
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
388
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
389
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
390 391
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
392

W
wangguanzhong 已提交
393
        result = dict(
W
wangguanzhong 已提交
394 395 396 397
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
398
        return result
G
Guanghua Yu 已提交
399 400


401 402 403 404 405
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
406
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
407 408 409 410 411 412 413
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
414 415
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
416 417
    """

W
wangguanzhong 已提交
418 419
    def __init__(
            self,
420
            model_dir,
W
wangguanzhong 已提交
421 422 423 424 425 426 427 428 429
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
430
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
431 432 433 434 435
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
436 437 438 439 440 441 442
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
443
            enable_mkldnn=enable_mkldnn,
444
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
461

W
wangguanzhong 已提交
462
    def predict(self, repeats=1):
463 464
        '''
        Args:
W
wangguanzhong 已提交
465
            repeats (int): repeat number for prediction
466
        Returns:
W
wangguanzhong 已提交
467
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
484 485
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
486 487


C
cnn 已提交
488
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
489 490
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
491 492
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
493 494 495 496 497
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
498 499
    im_shape = []
    scale_factor = []
500 501 502 503 504 505 506 507
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
508 509 510 511
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
512 513
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
514 515 516 517 518 519 520 521 522 523 524 525

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
545
        self.mask = False
546
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
547 548
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
549 550 551
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
552 553 554 555
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
Q
qingqing01 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
579
                   run_mode='paddle',
Q
qingqing01 已提交
580
                   batch_size=1,
G
Guanghua Yu 已提交
581
                   device='CPU',
582 583 584 585
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
586
                   trt_opt_shape=640,
587 588
                   trt_calib_mode=False,
                   cpu_threads=1,
589 590
                   enable_mkldnn=False,
                   enable_mkldnn_bfloat16=False):
Q
qingqing01 已提交
591 592 593
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
594
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
595
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
596 597 598 599
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
600 601
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
602 603 604
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
605
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
606
    """
607
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
608
        raise ValueError(
G
Guanghua Yu 已提交
609 610
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
Q
qingqing01 已提交
611 612 613
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
614
    if device == 'GPU':
Q
qingqing01 已提交
615 616 617
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
618
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
619
    elif device == 'XPU':
620
        config.enable_lite_engine()
G
Guanghua Yu 已提交
621
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
622 623
    else:
        config.disable_gpu()
624 625
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
626 627 628 629
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
630 631
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
632 633 634 635 636
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
637

G
Guanghua Yu 已提交
638 639 640 641 642
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
643 644
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
645
            workspace_size=1 << 25,
Q
qingqing01 已提交
646 647 648 649
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
650
            use_calib_mode=trt_calib_mode)
651 652

        if use_dynamic_shape:
653 654 655 656 657 658 659 660 661
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
662 663 664
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
665 666 667 668 669 670 671 672

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
673
    return predictor, config
Q
qingqing01 已提交
674 675


G
Guanghua Yu 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
707
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
708
    # visualize the predict result
C
cnn 已提交
709 710
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
711
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
712
        im_results = {}
W
wangguanzhong 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
728

C
cnn 已提交
729 730 731 732 733 734 735 736 737
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
738 739 740 741 742 743 744 745 746 747


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
748 749 750 751
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
752
    detector_func = 'Detector'
W
wangguanzhong 已提交
753
    if arch == 'SOLOv2':
754
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
755
    elif arch == 'PicoDet':
756 757
        detector_func = 'DetectorPicoDet'

758 759 760 761 762 763 764 765 766 767 768 769 770 771
    detector = eval(detector_func)(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
772

Q
qingqing01 已提交
773
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
774
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
775
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
776 777
    else:
        # predict from image
C
cnn 已提交
778 779
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
780
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
W
wangguanzhong 已提交
781
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
G
Guanghua Yu 已提交
782 783 784
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
785
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
786
            model_dir = FLAGS.model_dir
787
            model_info = {
788 789
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
790
            }
W
wangguanzhong 已提交
791
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
792 793 794 795


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
796
    parser = argsparser()
Q
qingqing01 已提交
797 798
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
799 800 801 802
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
803

804 805 806
    assert not (
        FLAGS.enable_mkldnn == False and FLAGS.enable_mkldnn_bfloat16 == True
    ), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
807

Q
qingqing01 已提交
808
    main()