layer.h 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24
#include <memory>  // NOLINT
M
minqiyang 已提交
25

26 27 28 29
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
30
#include "paddle/fluid/platform/device_context.h"
M
minqiyang 已提交
31
#include "paddle/fluid/operators/math/math_function.h"
32

M
minqiyang 已提交
33 34
#include "paddle/fluid/imperative/type_defs.h"

35 36 37
namespace paddle {
namespace imperative {

M
minqiyang 已提交
38 39
class VarBase;

X
Xin Pan 已提交
40 41
namespace py = ::pybind11;

X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
68
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

M
minqiyang 已提交
89 90
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
91 92 93 94 95
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
96

97 98
class OpBase;

M
minqiyang 已提交
99 100 101 102 103
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
104 105
class VarBase {
 public:
M
minqiyang 已提交
106
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
107

M
minqiyang 已提交
108 109 110 111
  explicit VarBase(bool stop_gradient)
      : VarBase(new framework::Variable(),
                stop_gradient ? nullptr : new VarBase(true), stop_gradient) {}

M
minqiyang 已提交
112
  VarBase(framework::Variable* var, VarBase* grad)
M
minqiyang 已提交
113 114 115 116
      : VarBase(var, grad, false) {}

 private:
  VarBase(framework::Variable* var, VarBase* grad, bool stop_gradient)
X
Xin Pan 已提交
117
      : var_desc_(nullptr),
X
polish  
Xin Pan 已提交
118 119
        var_(var),
        grads_(grad),
120
        block_(nullptr),
X
Xin Pan 已提交
121 122
        stop_gradient_(stop_gradient),
        pre_op_(nullptr),
M
minqiyang 已提交
123
        pre_op_out_idx_(-1) {}
124

M
minqiyang 已提交
125
 public:
M
minqiyang 已提交
126
  virtual ~VarBase() {
127 128 129 130 131 132
    LOG(ERROR) << "remove var " << name_;

    if (block_) {
      block_->RemoveVar(name_);
    }

M
minqiyang 已提交
133 134 135 136 137 138 139 140
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
141

M
minqiyang 已提交
142 143
  inline OpBase* PreOp() const { return pre_op_; }
  inline int PreOpOutIdx() const { return pre_op_out_idx_; }
X
Xin Pan 已提交
144

M
minqiyang 已提交
145 146 147 148
  inline void SetStopGradient(bool stop_gradient) {
    stop_gradient_ = stop_gradient;
  }
  inline bool IsStopGradient() const { return stop_gradient_; }
149

M
minqiyang 已提交
150 151
  void RunBackward();

X
Xin Pan 已提交
152
  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
M
minqiyang 已提交
153
                  int pre_op_out_idx, bool pre_op_stop_gradient) {
X
Xin Pan 已提交
154 155 156
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
M
minqiyang 已提交
157 158 159
    if (pre_op_stop_gradient) {
      stop_gradient_ = pre_op_stop_gradient;
    }
X
Xin Pan 已提交
160 161
  }

M
minqiyang 已提交
162 163 164 165 166 167 168 169 170 171
  void ClearGradient() {
    VLOG(1) << "clear gradient of " << var_desc_->Name();
    if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
      auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
      operators::math::set_constant(
          *(platform::DeviceContextPool::Instance().Get(
              grads_->var_->Get<framework::LoDTensor>().place())),
          grads_t, 0.0);
    }
  }
X
Xin Pan 已提交
172

M
minqiyang 已提交
173
  framework::LoDTensor& GradValue();
174

M
minqiyang 已提交
175 176
  std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
                                      const bool blocking) const;
M
minqiyang 已提交
177

M
minqiyang 已提交
178 179 180 181 182 183 184
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

185
  framework::VarDesc* var_desc_;
M
minqiyang 已提交
186

M
minqiyang 已提交
187 188
  framework::Variable* var_;
  VarBase* grads_;
189

190 191
  framework::BlockDesc* block_;

X
Xin Pan 已提交
192
 private:
193
  bool stop_gradient_;
X
Xin Pan 已提交
194 195 196
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
197
  std::string name_;
198 199
};

M
minqiyang 已提交
200 201 202
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
203 204
class OpBase {
 public:
X
Xin Pan 已提交
205 206 207
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
M
minqiyang 已提交
208
        backward_id_(-1),
M
minqiyang 已提交
209
        trace_id_(-1),
P
Paddle CI 已提交
210
        place_(platform::CPUPlace()) {}
211 212

  virtual ~OpBase() {
X
Xin Pan 已提交
213 214 215
    for (framework::OpDesc* desc : grad_op_descs_) {
      delete desc;
    }
216 217 218 219 220 221

    LOG(ERROR) << "remove op " << op_desc_->Type() << " id " << trace_id_;

    if (block_) {
      block_->RemoveOp(trace_id_, trace_id_ + 1);
    }
222 223
  }

X
Xin Pan 已提交
224
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
225

X
polish  
Xin Pan 已提交
226 227
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
228
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
229
  int forward_id_;
X
polish  
Xin Pan 已提交
230

X
Xin Pan 已提交
231
  // When has backward, one of `grad_op_descs_` or `backward_id_` is set,
X
polish  
Xin Pan 已提交
232
  // not both.
X
polish  
Xin Pan 已提交
233
  // Note: each fwd op corresponds to a vector of bwd ops.
X
Xin Pan 已提交
234
  std::vector<framework::OpDesc*> grad_op_descs_;
X
Xin Pan 已提交
235
  int backward_id_;
M
minqiyang 已提交
236
  int trace_id_;
X
Xin Pan 已提交
237

P
Paddle CI 已提交
238
  platform::Place place_;
M
minqiyang 已提交
239

M
minqiyang 已提交
240 241 242
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
243
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
244

X
polish  
Xin Pan 已提交
245
  // Inputs to a vector of bwd ops.
X
Xin Pan 已提交
246
  std::vector<framework::VariableValueMap> grad_input_vars_;
X
polish  
Xin Pan 已提交
247
  // Outputs to a vector of bwd ops.
X
Xin Pan 已提交
248
  std::vector<framework::VariableValueMap> grad_output_vars_;
X
polish  
Xin Pan 已提交
249

250 251 252 253 254 255 256 257 258 259 260
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
261
};
262

X
Xin Pan 已提交
263 264 265 266
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
267 268
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
269

X
Xin Pan 已提交
270
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
271

X
polish  
Xin Pan 已提交
272 273
  static int NumFuncs();

X
Xin Pan 已提交
274
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
275 276
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
277 278
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
279

X
polish  
Xin Pan 已提交
280 281 282
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
283 284 285 286
};

}  // namespace imperative
}  // namespace paddle