nn.py 117.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16 17 18 19 20
"""
All layers just related to the neural network.
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
22
from layer_function_generator import autodoc
Y
yangyaming 已提交
23
from tensor import concat
Y
Yu Yang 已提交
24 25

__all__ = [
Y
ying 已提交
26 27 28
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
29
    'dynamic_lstmp',
G
guosheng 已提交
30
    'dynamic_gru',
Y
ying 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'sequence_pool',
    'pool2d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
55 56
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
57 58 59 60
    'l2_normalize',
    'matmul',
    'warpctc',
    'sequence_reshape',
61
    'transpose',
62
    'im2sequence',
63
    'nce',
Q
Qiao Longfei 已提交
64
    'beam_search',
65
    'row_conv',
66
    'multiplex',
G
guosheng 已提交
67
    'layer_norm',
68 69
    'softmax_with_cross_entropy',
    'smooth_l1',
70
    'one_hot',
Y
Yu Yang 已提交
71 72 73 74 75 76 77 78 79
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
80
       name=None):
Y
Yu Yang 已提交
81
    """
82
    **Fully Connected Layer**
Y
Yu Yang 已提交
83

C
caoying03 已提交
84
    The fully connected layer can take multiple tensors as its inputs. It
Y
ying 已提交
85 86 87 88 89 90 91 92
    creates a variable (one for each input tensor) called weights for each
    input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer
    multiplies each input tensor with its coresponding weight to produce
    an output Tensor. If multiple input tensors are given, the results of
    multiple multiplications will be sumed up. If bias_attr is not None,
    a biases variable will be created and added to the output. Finally,
    if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
93

C
caoying03 已提交
94
    This process can be formulated as follows:
95 96 97

    .. math::

98
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
99 100 101

    In the above equation:

C
caoying03 已提交
102 103 104 105
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
106
    * :math:`Act`: The activation function.
C
caoying03 已提交
107
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
108 109

    Args:
C
caoying03 已提交
110 111 112 113 114 115 116 117
       input(Variable|list): The input tensor(s) to the fully connected layer.
       size(int): The number of output units in the fully connected layer.
       num_flatten_dims(int): The fc layer can accept an input tensor with more
                              than two dimensions. If this happens, the
                              multidimensional tensor will first be flattened
                              into a 2-dimensional matrix. The parameter
                              `num_flatten_dims` determines how the input tensor
                              is flattened: the first `num_flatten_dims`
Y
ying 已提交
118 119 120 121 122 123 124 125 126 127 128
                              (inclusive, index starts from 1) dimensions will
                              be flatten to form the first dimension of the
                              final matrix (height of the matrix), and the rest
                              `rank(X) - num_flatten_dims` dimensions are
                              flattened to form the second dimension of the
                              final matrix (width of the matrix). For example,
                              suppose `X` is a 6-dimensional tensor with a shape
                              [2, 3, 4, 5, 6], and `num_flatten_dims` = 3. Then,
                              the flattened matrix will have a shape
                              [2 x 3 x 4, 5 x 6] = [24, 30]. By default,
                              `num_flatten_dims` is set to 1.
C
caoying03 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
       param_attr(ParamAttr|list): The parameter attribute for learnable
                                   parameters/weights of the fully connected
                                   layer.
       param_initializer(ParamAttr|list): The initializer used for the
                                          weight/parameter. If set None,
                                          XavierInitializer() will be used.
       bias_attr(ParamAttr|list): The parameter attribute for the bias parameter
                                  for this layer. If set None, no bias will be
                                  added to the output units.
       bias_initializer(ParamAttr|list): The initializer used for the bias.
                                        If set None, then ConstantInitializer()
                                        will be used.
       act(str): Activation to be applied to the output of the fully connected
                 layer.
       name(str): Name/alias of the fully connected layer.
Y
Yu Yang 已提交
144 145


146
    Returns:
C
caoying03 已提交
147
        Variable: The output tensor variable.
148 149

    Raises:
C
caoying03 已提交
150
        ValueError: If rank of the input tensor is less than 2.
151 152 153 154

    Examples:
        .. code-block:: python

C
caoying03 已提交
155
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
156
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
157
    """
C
caoying03 已提交
158

C
caoying03 已提交
159
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
160 161 162 163 164 165 166 167 168

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
169

Y
Yu Yang 已提交
170 171 172 173 174
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
Q
Qiao Longfei 已提交
175 176
            inputs={"X": input_var,
                    "Y": w},
Y
Yu Yang 已提交
177
            outputs={"Out": tmp},
C
caoying03 已提交
178 179
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
Y
Yu Yang 已提交
180 181 182 183 184 185 186 187 188 189
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
190
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
Y
Yu Yang 已提交
191 192 193 194
    # add activation
    return helper.append_activation(pre_activation)


195 196 197 198 199 200
def embedding(input,
              size,
              is_sparse=False,
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
201
    """
202 203
    **Embedding Layer**

204
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
205 206
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
207 208 209

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
210 211

    Args:
212 213 214 215 216 217 218
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
219 220
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the padding_idx to use in lookup is
221 222
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
223
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
224

225 226 227
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
228

229 230
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
231

C
chengduoZH 已提交
232
          dict_size = len(dataset.ids)
233
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
234
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
235 236 237 238 239 240
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
241 242
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
243 244 245 246 247
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
248 249
        attrs={'is_sparse': is_sparse,
               'padding_idx': padding_idx})
Y
Yu Yang 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262
    return tmp


# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
263 264
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
265 266 267 268 269 270
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
271
    .. math::
Y
Yibing Liu 已提交
272

273
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
274

275
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
276

277
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
278

279 280 281
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
282

Y
Yibing Liu 已提交
283
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
284

285
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
286
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
287 288 289
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
Y
Yibing Liu 已提交
290
    gate bias vector), :math:`\sigma` is the non-linear activations, such as
291 292
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
293 294
    all of which have the same size as the cell output activation vector :math:`h`.

295 296 297 298
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
299 300 301
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
302 303 304
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
305 306 307
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
308 309

    Args:
310 311 312 313
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
314 315
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
316
        param_attr(ParamAttr|None): The parameter attribute for the learnable
317
                               hidden-hidden weights.
Y
Yibing Liu 已提交
318 319 320

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
321 322 323
                               - The shape is (D x 4D), where D is the hidden
                                 size.
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
324 325 326
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
327

328
                              1. `use_peepholes = False`
Y
Yibing Liu 已提交
329
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
330
                                - The shape is (1 x 4D).
331
                              2. `use_peepholes = True`
Y
Yibing Liu 已提交
332 333
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
334
                                - The shape is (1 x 7D).
335
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
336 337
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
338 339
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
340
                              "identity"], default "sigmoid".
341
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
342 343 344 345 346
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
347 348
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
349 350

    Returns:
Y
Yibing Liu 已提交
351 352
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
353

Y
Yibing Liu 已提交
354
    Examples:
Y
Yibing Liu 已提交
355 356
        .. code-block:: python

Y
Yibing Liu 已提交
357 358
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
359
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
360 361
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
362
    """
363

Y
Yu Yang 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
400 401 402 403 404 405 406 407 408 409 410
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
411 412
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
413 414 415
    """
    **Dynamic LSTMP Layer**

416 417 418 419 420 421
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
422 423 424 425 426

    The formula is as follows:

    .. math::

427
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
428

429
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
430

431
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
432

433
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
434

435
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
436

437
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
438

439
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
440

Y
Yibing Liu 已提交
441 442 443 444 445 446
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
447
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
448
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
449
          bias vector).
Y
Yibing Liu 已提交
450 451 452
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
453
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
454
    * :math:`h`: The hidden state.
455
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
456 457
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
458
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
459
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
460
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
461 462
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
463 464 465 466

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
467

Y
Yibing Liu 已提交
468 469 470 471 472 473 474 475 476 477 478 479
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
480
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
481 482
                               hidden-hidden weight and projection weight.

483 484
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
485 486
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
487 488
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
489 490
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
491 492 493 494 495 496
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
497
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
498 499 500
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
501
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        proj_activation(str): The activation for projection output.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
517 518
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
519 520

    Returns:
521 522
        tuple: The projection of hidden state, and cell state of LSTMP. The \
               shape of projection is (T x P), for the cell state which is \
Y
Yibing Liu 已提交
523 524 525 526 527
               (T x D), and both LoD is the same with the `input`.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
528
            hidden_dim, proj_dim = 512, 256
Y
Yibing Liu 已提交
529 530
            fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                     act=None, bias_attr=None)
531 532 533
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
534 535 536 537
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
538
    """
539

Y
Yibing Liu 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
586 587 588 589 590 591 592 593 594 595 596
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
    **Dynamic GRU Layer**

597
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
G
guosheng 已提交
598
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
599

G
guosheng 已提交
600 601 602 603 604 605 606 607 608
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
609

G
guosheng 已提交
610
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
611

G
guosheng 已提交
612
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
613 614
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
615 616 617 618
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
619
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
620 621

    Args:
622 623
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
624
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
625
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
626 627
            is the hidden size.
        size(int): The dimension of the gru cell.
628
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
629 630
            hidden-hidden weight matrix. Note:

631
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
632
              :math:`D` is the hidden size.
633
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
634
              The first part are weights of the update gate and reset gate with
635
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
636
              candidate hidden state with shape :math:`(D \\times D)`.
637
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
638
            hidden-hidden bias.
639
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
640 641 642
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
643
        activation(str): The activation for candidate hidden state.
G
guosheng 已提交
644 645 646
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".

    Returns:
G
guosheng 已提交
647 648
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
            and lod is the same with the input.
649

G
guosheng 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
    Examples:
        .. code-block:: python

            hidden_dim = 512
            x = fluid.layers.fc(input=data, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
            size, size), 'The shape of h0 should be(%d, %d)' % (size, size)
        inputs['h0'] = h_0

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
693 694 695 696 697 698
def gru_unit(input,
             hidden,
             size,
             weight=None,
             bias=None,
             activation='tanh',
699
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
700
    """
701
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
702

703 704
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
705

706
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
707

708
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
709

710
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
711 712

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
713 714 715
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
716 717
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

718 719
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
720 721 722
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
723 724 725 726 727 728 729

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
        weight (ParamAttr): The weight parameters for gru unit. Default: None
        bias (ParamAttr): The bias parameters for gru unit. Default: None
730 731 732 733
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
734

735 736 737 738 739 740
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
741

742
             # assuming we have x_t_data and prev_hidden of size=10
743
             x_t = fluid.layers.fc(input=x_t_data, size=30)
744 745
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
    if weight is None:
        weight = helper.create_parameter(
            attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)

    # create bias
Y
Yibing Liu 已提交
766

Y
Yu Yang 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
    if bias is None:
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru_unit',
        inputs={'Input': input,
                'HiddenPrev': hidden,
                'Weight': weight},
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
            'activation': 0,
            'gate_activation': 1,
        })

    return updated_hidden, reset_hidden_pre, gate


794
def linear_chain_crf(input, label, param_attr=None):
Y
Yu Yang 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


820
def crf_decoding(input, param_attr, label=None):
Y
Yu Yang 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


F
fengjiayi 已提交
834
def cos_sim(X, Y):
Y
Yu Yang 已提交
835 836 837 838
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
F
fengjiayi 已提交
839
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


F
fengjiayi 已提交
853
def dropout(x, dropout_prob, is_test=False, seed=None):
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly set (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
       x(variable): The input tensor.
       dropout_prob(float): Probability of setting units to zero.
       is_test(bool): A flag indicating whether it is in test phrase or not.
       seed(int): A Python integer used to create random seeds. If this
                  parameter is set to None, a random seed is used.
                  NOTE: If an integer seed is given, always the same output
                  units will be dropped. DO NOT use a fixed seed in training.

    Returns:
        Variable: A tensor variable.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
          droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
    """

F
fengjiayi 已提交
882
    helper = LayerHelper('dropout', **locals())
883 884 885 886 887 888 889
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
890 891 892 893 894 895
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
896 897 898
    return out


F
fengjiayi 已提交
899
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
900
    """
Y
Yibing Liu 已提交
901 902
    **Cross Entropy Layer**

903 904 905
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
906 907

    1) One-hot cross-entropy:
F
fengjiayi 已提交
908
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
909

Y
Yibing Liu 已提交
910
        .. math::
Y
yangyaming 已提交
911

Y
Yibing Liu 已提交
912 913 914
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
915 916
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
917 918 919 920 921

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
922
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
923 924 925
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
926 927
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
928
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
929

Y
Yibing Liu 已提交
930
    Args:
Y
yangyaming 已提交
931
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
932 933 934 935
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
936
        label (Variable|list): the ground truth which is a 2-D tensor. When
937 938 939 940
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
941
        soft_label (bool): a flag indicating whether to
942 943
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
944 945 946 947 948

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
949 950 951 952 953
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
954 955 956 957 958 959

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
960
    """
F
fengjiayi 已提交
961
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
962 963 964 965 966 967
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
968
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
969 970 971
    return out


F
fengjiayi 已提交
972
def square_error_cost(input, label):
Y
Yu Yang 已提交
973
    """
974 975
    **Square error cost layer**

976 977
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
978

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
       input(Variable): Input tensor, has predictions.
       label(Variable): Label tensor, has target labels.

    Returns:
G
guosheng 已提交
996
        Variable: The tensor variable storing the element-wise squared error \
997
                  difference of input and label.
998 999 1000 1001 1002 1003 1004 1005

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1006
    """
F
fengjiayi 已提交
1007
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1017 1018
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1019 1020 1021 1022 1023 1024 1025
    return square_out


def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1026
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1027
    """
Y
yangyaming 已提交
1028
    This function computes and outputs the precision, recall and
1029
    F1-score of chunk detection.
Y
Yu Yang 已提交
1030
    """
F
fengjiayi 已提交
1031
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1032 1033 1034 1035 1036

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1037 1038 1039
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1040 1041 1042 1043 1044 1045 1046 1047

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1048 1049 1050 1051
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1052 1053 1054
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1055 1056
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1057
        })
1058 1059
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068


def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1069
                  act=None):
Y
Yu Yang 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


def conv2d(input,
           num_filters,
           filter_size,
           stride=None,
           padding=None,
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1111
           use_cudnn=True,
C
chengduoZH 已提交
1112
           act=None):
Y
Yu Yang 已提交
1113
    """
C
chengduoZH 已提交
1114 1115 1116
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
1117 1118 1119
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCHW format. Where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
C
chengduoZH 已提交
1120 1121
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
1122 1123 1124
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1125

1126
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1127

C
chengduoZH 已提交
1128 1129
    .. math::

C
refine  
chengduoZH 已提交
1130
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1131

C
chengduoZH 已提交
1132
    In the above equation:
C
chengduoZH 已提交
1133

1134 1135 1136 1137 1138
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1139 1140
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
C
chengduoZH 已提交
1141 1142 1143

    Example:

1144 1145 1146
        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$
C
refine  
chengduoZH 已提交
1147

1148
          Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
refine  
chengduoZH 已提交
1149

1150 1151
        - Output:
          Output shape: $(N, C_{out}, H_{out}, W_{out})$
C
refine  
chengduoZH 已提交
1152

C
chengduoZH 已提交
1153
        Where
1154 1155

        .. math::
C
chengduoZH 已提交
1156

C
chengduoZH 已提交
1157 1158
        H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
        W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1159 1160

    Args:
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
       input(Variable): The input image with [N, C, H, W] format.
       num_filters(int): The number of filter. It is as same as the output
           image channel.
       filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
           it must contain two integers, (filter_size_H, filter_size_W).
           Otherwise, the filter will be a square.
       stride(int|tuple): The stride size. If stride is a tuple, it must
           contain two integers, (stride_H, stride_W). Otherwise, the
           stride_H = stride_W = stride. Default: stride = 1.
       padding(int|tuple): The padding size. If padding is a tuple, it must
           contain two integers, (padding_H, padding_W). Otherwise, the
           padding_H = padding_W = padding. Default: padding = 0.
       groups(int): The groups number of the Conv2d Layer. According to grouped
           convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
           the first half of the filters is only connected to the first half
           of the input channels, while the second half of the filters is only
           connected to the second half of the input channels. Default: groups=1
       param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
       bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
       use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
           library is installed. Default: True
       act(str): Activation type. Default: None
C
chengduoZH 已提交
1183 1184

    Returns:
G
guosheng 已提交
1185
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1186 1187
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1188
    Raises:
1189 1190
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1191

C
chengduoZH 已提交
1192 1193 1194
    Examples:
        .. code-block:: python

1195 1196 1197 1198
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(
              input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1199 1200 1201 1202 1203
    """
    if stride is None:
        stride = [1, 1]

    num_channels = input.shape[1]
1204 1205

    l_type = 'conv2d'
X
xzl 已提交
1206 1207
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1208
        l_type = 'depthwise_conv2d'
1209 1210 1211 1212

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
C
chengduoZH 已提交
1226 1227
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1245
        type=l_type,
Y
Yu Yang 已提交
1246 1247 1248 1249 1250
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1251 1252 1253 1254 1255 1256
        attrs={
            'strides': stride,
            'paddings': padding,
            'groups': groups,
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
1257 1258 1259 1260 1261 1262

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1263
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1264
    """
Y
yangyaming 已提交
1265 1266 1267
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
F
fengjiayi 已提交
1293

L
Luo Tao 已提交
1294 1295
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1296
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1297 1298 1299 1300 1301 1302 1303 1304
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1305

Y
yangyaming 已提交
1306
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1307 1308 1309 1310 1311
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
Y
Yu Yang 已提交
1312
    """
F
fengjiayi 已提交
1313
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1325 1326 1327 1328 1329
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1330 1331 1332
    return pool_out


F
fengjiayi 已提交
1333
def sequence_first_step(input):
L
Luo Tao 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    """
    This funciton get the first step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1348

L
Luo Tao 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1358

Y
yangyaming 已提交
1359
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1360 1361 1362
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1363 1364 1365
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1366
def sequence_last_step(input):
L
Luo Tao 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
    """
    This funciton get the last step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1381

L
Luo Tao 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1391

Y
yangyaming 已提交
1392
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1393 1394 1395
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1396 1397 1398
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
1399 1400 1401 1402 1403
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=None,
           pool_padding=None,
C
caoying03 已提交
1404
           global_pooling=False,
C
chengduoZH 已提交
1405
           use_cudnn=True,
C
caoying03 已提交
1406
           name=None):
Y
Yu Yang 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
    if pool_padding is None:
        pool_padding = [0, 0]
    if pool_stride is None:
        pool_stride = [1, 1]
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]
C
chengduoZH 已提交
1425 1426
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1441 1442
            "paddings": pool_padding,
            "use_cudnn": use_cudnn
Y
Yu Yang 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1455
               data_layout='NCHW',
1456 1457 1458
               name=None,
               moving_mean_name=None,
               moving_variance_name=None):
Y
Yu Yang 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1485
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1486 1487

    mean = helper.create_global_variable(
1488
        name=moving_mean_name,
Q
QI JUN 已提交
1489 1490 1491 1492
        dtype=input.dtype,
        shape=param_shape,
        persistable=True,
        stop_gradient=True)
Y
Yu Yang 已提交
1493 1494 1495
    helper.set_variable_initializer(var=mean, initializer=Constant(0.0))

    variance = helper.create_global_variable(
1496
        name=moving_variance_name,
Q
QI JUN 已提交
1497 1498 1499 1500
        dtype=input.dtype,
        shape=param_shape,
        persistable=True,
        stop_gradient=True)
Y
Yu Yang 已提交
1501 1502 1503 1504 1505 1506 1507
    helper.set_variable_initializer(var=variance, initializer=Constant(1.0))

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1508 1509
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


G
guosheng 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
    **Layer Normalization**

1548
    Assume feature vectors exist on dimensions
G
guosheng 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
    :attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
    along these dimensions for each feature vector :math:`a` with size
    :math:`H`, then normalize each feature vector using the corresponding
    statistics. After that, apply learnable gain and bias on the normalized
    tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    .. math::

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

    Args:
        input(Variable): The input tensor variable.
1569
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
1570
            normalization.
1571
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
1572
            normalization.
1573
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
1574
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1575
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.

    Returns:
        Variable: A tensor variable with the same shape as the input.

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
            x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
1607
    if shift:
G
guosheng 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


C
caoying03 已提交
1632
def beam_search_decode(ids, scores, name=None):
Y
Yu Yang 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=None,
                     stride=None,
C
chengduoZH 已提交
1655
                     dilation=None,
C
caoying03 已提交
1656
                     param_attr=None,
C
chengduoZH 已提交
1657
                     use_cudnn=True,
C
caoying03 已提交
1658
                     name=None):
Y
Yu Yang 已提交
1659
    """
1660 1661 1662 1663 1664 1665 1666 1667
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
1668 1669
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

    For each input :math:`X`, the equation is:

    .. math::

        Out = W \\ast X

    In the above equation:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast` : Convolution transpose operation.
1682 1683
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
Y
Yu Yang 已提交
1684

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
    Example:

        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$

          Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

        - Output:

          Output shape: $(N, C_{out}, H_{out}, W_{out})$

        Where
Y
Yu Yang 已提交
1698

1699 1700 1701 1702
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
1703 1704

    Args:
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
       input(Variable): The input image with [N, C, H, W] format.
       num_filters(int): The number of the filter. It is as same as the output
           image channel.
       output_size(int|tuple|None): The output image size. If output size is a
           tuple, it must contain two integers, (image_H, image_W). This
           parameter only works when filter_size is None.
       filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
           it must contain two integers, (filter_size_H, filter_size_W).
           Otherwise, the filter will be a square. None if use output size to
           calculate filter_size.
       padding(int|tuple): The padding size. If padding is a tuple, it must
           contain two integers, (padding_H, padding_W). Otherwise, the
           padding_H = padding_W = padding. Default: padding = 0.
       stride(int|tuple): The stride size. If stride is a tuple, it must
           contain two integers, (stride_H, stride_W). Otherwise, the
           stride_H = stride_W = stride. Default: stride = 1.
       dilation(int|tuple): The dilation size. If dilation is a tuple, it must
           contain two integers, (dilation_H, dilation_W). Otherwise, the
           dilation_H = dilation_W = dilation. Default: dilation = 1.
1724 1725
       param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                              Default: None
1726 1727 1728 1729
       use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
           library is installed. Default: True
       name(str|None): A name for this layer(optional). If set None, the layer
           will be named automatically.
Y
Yu Yang 已提交
1730 1731

    Returns:
1732 1733 1734
       Variable: The tensor variable storing the convolution transpose result.

    Raises:
1735 1736
       ValueError: If the shapes of input, filter_size, stride, padding and
                   groups mismatch.
1737 1738 1739 1740

    Examples:
       .. code-block:: python

1741 1742 1743 1744
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(
              input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

    op_attr = dict()

    if isinstance(padding, int):
        op_attr['paddings'] = [padding, padding]
    elif padding is not None:
        op_attr['paddings'] = padding

    if isinstance(stride, int):
C
chengduoZH 已提交
1759
        op_attr['strides'] = [stride, stride]
Y
Yu Yang 已提交
1760 1761 1762
    elif stride is not None:
        op_attr['strides'] = stride

C
chengduoZH 已提交
1763 1764 1765 1766 1767
    if isinstance(dilation, int):
        op_attr['dilations'] = [dilation, dilation]
    elif dilation is not None:
        op_attr['dilations'] = dilation

C
chengduoZH 已提交
1768 1769 1770 1771
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
    op_attr['use_cudnn'] = use_cudnn

Y
Yu Yang 已提交
1772 1773 1774 1775 1776 1777 1778 1779
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        padding = op_attr.get('paddings', [0, 0])
        stride = op_attr.get('strides', [1, 1])
C
chengduoZH 已提交
1780
        dilation = op_attr.get('dilations', [1, 1])
Y
Yu Yang 已提交
1781 1782 1783

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1784 1785 1786 1787 1788

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1789
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1790

Y
Yu Yang 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
    elif isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]

    filter_shape = [input_channel, num_filters] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': out},
        attrs=op_attr)

    return out
Y
yangyaming 已提交
1807 1808


C
caoying03 已提交
1809
def sequence_expand(x, y, name=None):
1810 1811
    """Sequence Expand Layer. This layer will expand the input variable **x**
    according to LoD information of **y**. And the following examples will
Y
yangyaming 已提交
1812
    explain how sequence_expand works:
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
                x.lod = [[0,       2, 3],
                         [0, 1,    3, 4]]
                x.data = [a, b, c, d]
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 2-level LoDTensor:
                out.lod = [[0,                2,    4],
                           [0,       3,       6, 7, 8]]
                out.data = [a, a, a, b, b, b, c, d]
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
                x.data = [a, b, c]
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1841
                y.lod = [[0, 2, 3, 6]]
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 1-level LoDTensor:
                out.lod = [[0,    2, 3,      6]]
                out.data = [a, a, b, c, c, c]
                out.dims = [6, 1]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
C
caoying03 已提交
1853 1854
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
1865
            out = layers.sequence_expand(x=x, y=y)
1866
    """
Y
yangyaming 已提交
1867
    helper = LayerHelper('sequence_expand', input=x, **locals())
1868 1869 1870
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
1871 1872
        type='sequence_expand', inputs={'X': x,
                                        'Y': y}, outputs={'Out': tmp})
1873
    return tmp
1874 1875


Q
Qiao Longfei 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
    '''
    This function implements the beam search algorithm.
    '''
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
1908 1909 1910 1911
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
1912
              param_attr=None,
C
caoying03 已提交
1913 1914
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
1915 1916 1917 1918
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

1919
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
1920

1921
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
1922

1923
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
1924

1925
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
1926 1927 1928

            h_t & = o_t tanh(c_t)

1929 1930 1931 1932 1933 1934
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
1935 1936 1937

        .. math::

1938
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
1939 1940 1941 1942 1943 1944 1945 1946

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
1947
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
1948 1949

    Args:
Y
yangyaming 已提交
1950 1951 1952 1953 1954 1955
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
1956
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
1957 1958
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
1959 1960
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
1961 1962
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
1963 1964

    Returns:
Y
yangyaming 已提交
1965
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
1966 1967

    Raises:
1968 1969 1970 1971
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
1972 1973 1974 1975 1976 1977

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
1978
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
1979
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
1980
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
1997
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
1998 1999 2000 2001
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2002 2003
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2004 2005 2006
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2007
    size = cell_t_prev.shape[1]
2008
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2009 2010
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2011
                param_attr=param_attr,
2012
                bias_attr=bias_attr)
Y
yangyaming 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2025
    return h, c
G
guosheng 已提交
2026 2027


C
caoying03 已提交
2028
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2029
    """
Y
yangyaming 已提交
2030
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2031 2032 2033

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
2034 2035 2036 2037
        dim (int|None): The dimension along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
G
guosheng 已提交
2038
            the dimension to reduce is :math:`rank + dim`.
2039
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2040
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2041
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2042 2043
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2044 2045 2046

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2047

G
guosheng 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2072 2073


C
caoying03 已提交
2074
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2075
    """
Y
yangyaming 已提交
2076
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
2077 2078 2079

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
2080 2081 2082 2083
        dim (int|None): The dimension along which the mean is computed. If
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
G
guosheng 已提交
2084
            :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
2085 2086
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2087
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2088 2089
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2090 2091 2092

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2093

G
guosheng 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2118 2119


C
caoying03 已提交
2120
def reduce_max(input, dim=None, keep_dim=False, name=None):
2121
    """
Y
yangyaming 已提交
2122
    Computes the maximum of tensor elements over the given dimension.
2123 2124 2125

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
2126 2127 2128 2129
        dim (int|None): The dimension along which the maximum is computed.
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
2130
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
2131 2132
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2133
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2134 2135
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2136 2137 2138

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2139

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2166
def reduce_min(input, dim=None, keep_dim=False, name=None):
2167
    """
Y
yangyaming 已提交
2168
    Computes the minimum of tensor elements over the given dimension.
2169 2170 2171

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
2172 2173 2174 2175
        dim (int|None): The dimension along which the minimum is computed.
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
2176
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
2177 2178
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2179
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2180 2181
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2182 2183 2184

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2185

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2210 2211


C
caoying03 已提交
2212
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2213
    """
C
caoying03 已提交
2214
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
2215 2216 2217

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
2218 2219 2220 2221 2222
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
2223
            :attr:`dim` dimension orderly.
C
caoying03 已提交
2224
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
2225
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
2226 2227
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

    output = x / sqrt(max(sum(x**2), epsilon))

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
       x(Variable|list): The input tensor to l2_normalize layer.
       axis(int): Dimension along which to normalize the input.
       epsilon(float): A lower bound value for `x`'s l2 norm. sqrt(epsilon) will
                       be used as the divisor if the l2 norm of `x` is less than
                       sqrt(epsilon).
       name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
Y
ying 已提交
2303
          normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
2304 2305
    """

F
fengjiayi 已提交
2306 2307
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

    helper = LayerHelper("l2_normalize", **locals())

    square = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(type="square", inputs={"X": x}, outputs={"Out": square})

    reduced_sum = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reduce_sum",
        inputs={"X": square},
        outputs={"Out": reduced_sum},
        attrs={
            "dim": 1 if axis is None else axis,
            "keep_dim": True,
            "reduce_all": False
        })

    # TODO(caoying) A lower bound value epsilon for the norm is needed to
    # imporve the numeric stability of reciprocal. This requires a maximum_op.
    rsquare = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reciprocal", inputs={"X": reduced_sum}, outputs={"Out": rsquare})

    # TODO(caoying) the current elementwise_mul operator does not support a
    # general broadcast rule which broadcasts input(Y) to have the same
    # dimension with Input(X) starting from a specified dimension. So this
2334
    # exanpsion is requred. Once a general broadcast rule is spported, this
C
caoying03 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
    # expanding canbe removed.
    rsquare_expanded = helper.create_tmp_variable(dtype=x.dtype)
    expand_times = [1] * len(x.shape)
    expand_times[axis] = int(x.shape[axis])
    helper.append_op(
        type="expand",
        inputs={"X": rsquare},
        outputs={"Out": rsquare_expanded},
        attrs={"expand_times": expand_times})

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="elementwise_mul",
        inputs={"X": x,
                "Y": rsquare_expanded},
        outputs={"Out": out})
    return out
2352 2353


2354
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
2355
    """
Y
ying 已提交
2356 2357 2358 2359
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2360

C
chengduoZH 已提交
2361
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2362
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2363

2364 2365 2366 2367 2368
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2369
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2370

C
chengduoZH 已提交
2371
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2372
      performs in the following way.
G
guosheng 已提交
2373

2374
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2375
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2376
        last two dimensions and a batched matrix multiply supporting broadcast
2377
        applies on the two tensors.
G
guosheng 已提交
2378

Y
ying 已提交
2379 2380
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2381
    removed after matrix multiplication.
G
guosheng 已提交
2382 2383 2384

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2385 2386 2387
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
2388
        name(str|None): A name for this layer(optional). If set None, the layer
2389
            will be named automatically.
G
guosheng 已提交
2390 2391

    Returns:
2392
        Variable: The product Tensor variable.
G
guosheng 已提交
2393

G
guosheng 已提交
2394 2395 2396
    Examples:
        .. code-block:: python

2397
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2398 2399
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2400

2401 2402
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2403

2404 2405
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2406

2407 2408
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2409 2410 2411 2412

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

2413 2414
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
2415

Y
ying 已提交
2416
            # x: [M], y: [N]
2417
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
2418
    """
Y
ying 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
2431
            y_shape = y_shape + [1]
Y
ying 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

2448
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
2449
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
2450
    helper.append_op(
2451 2452 2453 2454 2455 2456 2457
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
2458 2459


W
wanghaoshuang 已提交
2460 2461 2462 2463 2464
def edit_distance(input,
                  label,
                  normalized=False,
                  ignored_tokens=None,
                  name=None):
2465
    """
Y
ying 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
2475

Y
ying 已提交
2476
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
2477

Y
ying 已提交
2478 2479 2480 2481
    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
    in order in the same way in the LoDTensor Input(Refs).
W
wanghaoshuang 已提交
2482

Y
ying 已提交
2483 2484 2485
    Output(Out) contains the `batch_size` results and each stands for the edit
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
2486

2487 2488 2489 2490 2491
    Args:

        input(Variable): The indices for hypothesis strings.

        label(Variable): The indices for reference strings.
W
wanghaoshuang 已提交
2492

Y
ying 已提交
2493 2494
        normalized(bool): Indicated whether to normalize the edit distance by
                          the length of reference string.
2495

Y
ying 已提交
2496 2497
        ignored_tokens(list of int): Tokens that should be removed before
                                     calculating edit distance.
2498

W
wanghaoshuang 已提交
2499
    Returns:
W
wanghaoshuang 已提交
2500
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
2501 2502 2503 2504 2505

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
2506 2507
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')

2508
            cost = fluid.layers.edit_distance(input=x,label=y)
2509
    """
2510
    helper = LayerHelper("edit_distance", **locals())
2511

2512
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
2513
    if ignored_tokens is not None and len(ignored_tokens) > 0:
2514 2515 2516 2517 2518 2519 2520
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
2521
            attrs={"tokens": ignored_tokens})
2522 2523 2524 2525 2526 2527
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erase_label]},
W
wanghaoshuang 已提交
2528
            attrs={"tokens": ignored_tokens})
2529 2530
        label = erased_label

2531 2532
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
2533
    sequence_num = helper.create_tmp_variable(dtype="int64")
2534 2535 2536 2537
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
2538 2539
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
2540 2541
        attrs={"normalized": normalized})

2542
    return edit_distance_out, sequence_num
2543 2544 2545 2546 2547


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
ying 已提交
2548 2549 2550 2551
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

        input.lod = [[0, 4, 8]]

        Then:

        output.data = [[2],
                       [1],
                       [3]]

        output.lod = [[0, 2, 3]]

    Args:

Y
ying 已提交
2581 2582 2583 2584 2585 2586
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
2587

Y
ying 已提交
2588 2589 2590
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
2591 2592

    Returns:
2593
        Variable: CTC greedy decode result. If all the sequences in result were
2594
        empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1].
2595 2596 2597 2598 2599

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
2600

2601
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
2602
    """
2603
    helper = LayerHelper("ctc_greedy_decoder", **locals())
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
    # top 1 op
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": 1})

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
2619
        outputs={"Output": [ctc_out]},
2620 2621
        attrs={"merge_repeated": True,
               "blank": blank})
2622
    return ctc_out
2623 2624


F
fengjiayi 已提交
2625
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
2626
    """
2627 2628
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
2629
    to compute Connectionist Temporal Classification (CTC) loss.
2630 2631
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
    input tensor.

    Args:
       input(Variable): (LodTensor, default: LoDTensor<float>),
         the unscaled probabilities of variable-length sequences,
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
       label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
         of variable-length sequence, which is a 2-D Tensor with LoD
         information. It is of the shape [Lg, 1], where Lg is th sum of
         all labels' length.
2645
       blank: (int, default: 0), the blank label index of Connectionist
W
wanghaoshuang 已提交
2646 2647
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
2648
       norm_by_times: (bool, default: false), whether to normalize
W
wanghaoshuang 已提交
2649
       the gradients by the number of time-step, which is also the
2650 2651
       sequence's length. There is no need to normalize the gradients
       if warpctc layer was follewed by a mean_op.
W
wanghaoshuang 已提交
2652 2653

    Returns:
2654 2655
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
2656 2657 2658

    Examples:
        .. code-block:: python
2659 2660 2661 2662
            y = layers.data(
                name='y', shape=[11, 8], dtype='float32', lod_level=1)
            y_predict = layers.data(
                name='y_predict', shape=[11, 1], dtype='float32')
W
wanghaoshuang 已提交
2663 2664 2665
            cost = layers.warpctc(input=y_predict, label=y)

    """
F
fengjiayi 已提交
2666
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
            x.data = [[1, 2], [3, 4],
                      [5, 6], [7, 8], [9, 10], [11, 12]]
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1, 2, 3, 4],
                        [5, 6, 7, 8], [9, 10, 11, 12]]
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
       input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
                with shape being [N, M] where M for dimension.
       new_dim (int): New dimension which the input LoDTensor is reshaped to.

    Returns:
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 20],
                              dtype='float32', lod_level=1)
            x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
2732 2733


2734
@autodoc()
Y
Yang Yu 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
2786
    return cost / (num_neg_samples + 1)
2787 2788


Y
fix ci.  
ying 已提交
2789
def transpose(x, perm, name=None):
Y
ying 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
       input (Variable): (Tensor), A Tensor.
       perm (list): A permutation of the dimensions of `input`.

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
2809
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
2810 2811
    """

Y
fix ci.  
ying 已提交
2812
    if len(perm) != len(x.shape):
Y
ying 已提交
2813 2814 2815
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
2816 2817 2818 2819 2820 2821
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
2822 2823

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
2824
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
2825 2826
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
2827
        inputs={'X': [x]},
Y
ying 已提交
2828 2829 2830
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
2831 2832


2833
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
2834
    """
2835 2836 2837 2838 2839 2840 2841
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

2870 2871 2872
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
2873 2874 2875 2876 2877
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
2907 2908 2909
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

            output.lod = [[0, 4, 8]]

        The simple usage is:

        .. code-block:: python

2930 2931
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
2932 2933

    """
W
wanghaoshuang 已提交
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

2945
    helper = LayerHelper('im2sequence', **locals())
2946 2947
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
2948
        type='im2sequence',
2949 2950 2951
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
2952 2953 2954
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
2955 2956
        })
    return out
2957 2958


2959 2960 2961 2962
def row_conv(input, future_context_size, param_attr=None, act=None):
    """Row Conv Operator. This layer will apply lookahead convolution to
    **input**. The input variable should be a 2D LoDTensor with shape [T, D].
    Parameters with shape [future_context_size + 1, D] will be created. The math
Y
yangyaming 已提交
2963
    equation of row convolution is as follows:
2964 2965 2966 2967 2968 2969 2970

    .. math::
        Out_{i} = \sum_{j = i} ^ {i + \\tau} X_{j} \odot W_{i - j}

    In the above equation:

    * :math:`Out_{i}`: The i-th row of output variable with shape [1, D].
Y
yangyaming 已提交
2971
    * :math:`\\tau`: Future context size.
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
    * :math:`X_{j}`: The j-th row of input variable with shape [1, D].
    * :math:`W_{i-j}`: The (i-j)-th row of parameters with shape [1, D].

    More details about row_conv please refer to the paper \
    (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and
    the design document \
    (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    Args:
        input (Variable): Input variable, a 2D LoDTensor with shape [T, D].
Y
yangyaming 已提交
2982 2983
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        Variable: The output tensor with same shape as input tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[16],
                            dtype='float32', lod_level=1)
            out = fluid.layers.row_conv(input=x, future_context_size=2)
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
3009
    return helper.append_activation(out)
3010 3011


3012 3013 3014 3015
def multiplex(inputs, index):
    """
    **Multiplex Layer**

Y
yangyaming 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
    Referring to the given index variable, this layer selects rows from the
    input variables to construct a multiplex variable. Assuming that there are
    :math:`m` input variables and :math:`I_i` represents the i-th input
    variable and :math:`i` is in [0, :math:`m`). All input variables are
    tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
    Please note that rank of the input tensor should be at least 2. Each input
    variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
    where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
    * ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
    variable. The given index variable should be a 2-D tensor with shape
    [:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
    Then the output variable will be a tensor with shape [:math:`d_0`,
    :math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
    matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
    row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
3031 3032

    Args:
Y
yangyaming 已提交
3033 3034
       inputs (list): A list of variables to gather from. All variables have the
                same shape and the rank is at least 2.
3035
       index (Variable): Tensor<int32>, index variable which is a 2-D tensor
Y
yangyaming 已提交
3036
                with shape [M, 1] where M is the batch size.
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049

    Returns:
        Variable: Multiplex variable gathered from input variables.

    Examples:
        .. code-block:: python

            x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
            x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
            index = fluid.layers.data(name='index', shape=[1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
3050 3051 3052 3053 3054 3055

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
3056 3057 3058 3059 3060 3061
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
3062 3063 3064 3065 3066


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
3067

3068 3069 3070 3071
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
3072

3073 3074 3075
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
3076

3077 3078 3079
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
3080

3081
    The equation is as follows:
3082

3083
    1) Hard label (one-hot label, so every sample has exactly one class)
3084

3085 3086 3087 3088
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
3089

3090 3091 3092
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
3093

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.softmax_with_cross_entropy(logits=fc, label=label)
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
    **Smooth L1 Loss Operator. **

    This operator computes the smooth l1 loss for X and Y.
    The operator takes the first dimension of X and Y as batch size.
    For each instance, it computes the smooth l1 loss element by element first
    and then sums all the losses. So the shape of Out is [batch_size, 1].
3138

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
            l1 loss op with shape [batch_size, dim1, ..., dimN].
        y (Variable): A tensor with rank at least 2. The target value of smooth
            l1 loss op with same shape as x.
        inside_weight (Variable|None):  A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
            the result of (x - y) will be multiplied by this tensor element by
            element.
        outside_weight (Variable|None): A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
            the out smooth l1 loss will be multiplied by this tensor element
            by element.
        sigma (float|None): Hyper parameter of smooth l1 loss op. A float scalar
            with default value 1.0.
    Returns:
        Variable: A tensor with rank be 2. The output smooth l1 loss with
            shape [batch_size, 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[100], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.smooth_l1(logits=fc, label=label)
    """
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217


def one_hot(input, depth):
    """
    One Hot Operator. This operator creates the one-hot representations for input
    index values. The following example will help to explain the function of this
    operator.

    Args:
        input(Tensor/LodTensor):  A Tensor/LodTensor of indices, last dimension must be 1.
        depth(scalar): an interger defining the depth of the one hot dimension.

    Returns:
         The one-hot tensor or LodTensor, same as input.

    Examples:
        X is a LoDTensor:
          X.lod = [[0, 1, 4]]
          X.shape = [4, 1]
          X.data = [[1], [1], [3], [0]]
        set depth = 4
        Out is a LoDTensor:
          Out.lod = [[0, 1, 4]]
          Out.shape = [4, 4]
          Out.data = [[0., 1., 0., 0.],
                      [0., 1., 0., 0.],
                      [0., 0., 0., 1.],
                      [1., 0., 0., 0.]]
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out