trainer.py 17.1 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import random
import datetime
import numpy as np
from PIL import Image

import paddle
27 28
from paddle.distributed import ParallelEnv, fleet
from paddle import amp
K
Kaipeng Deng 已提交
29 30 31 32 33
from paddle.static import InputSpec

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
from ppdet.utils.visualizer import visualize_results
34
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_categories, get_infer_results
K
Kaipeng Deng 已提交
35 36
import ppdet.utils.stats as stats

37
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter
K
Kaipeng Deng 已提交
38 39 40
from .export_utils import _dump_infer_config

from ppdet.utils.logger import setup_logger
41
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
42 43 44 45 46 47 48 49 50 51

__all__ = ['Trainer']


class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
52
        self.optimizer = None
53
        self.slim = None
K
Kaipeng Deng 已提交
54 55 56

        # build model
        self.model = create(cfg.architecture)
57 58

        # model slim build
59
        if 'slim' in cfg and cfg.slim:
60 61
            if self.mode == 'train':
                self.load_weights(cfg.pretrain_weights, cfg.weight_type)
62 63
            self.slim = create(cfg.slim)
            self.slim(self.model)
64

K
Kaipeng Deng 已提交
65 66
        # build data loader
        self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]
K
Kaipeng Deng 已提交
67
        if self.mode == 'train':
K
Kaipeng Deng 已提交
68 69
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)
K
Kaipeng Deng 已提交
70 71 72 73 74 75 76 77
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
78 79 80 81 82 83 84 85

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr,
                                                        self.model.parameters())

K
Kaipeng Deng 已提交
86 87 88
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

K
Kaipeng Deng 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        self.status = {}

        self.start_epoch = 0
        self.end_epoch = cfg.epoch

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
104
            if 'use_vdl' in self.cfg and self.cfg.use_vdl:
105
                self._callbacks.append(VisualDLWriter(self))
K
Kaipeng Deng 已提交
106 107 108
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
109 110
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
111
            self._compose_callback = ComposeCallback(self._callbacks)
112
        elif self.mode == 'test' and 'use_vdl' in self.cfg and self.cfg.use_vdl:
113 114
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
115 116 117 118 119
        else:
            self._callbacks = []
            self._compose_callback = None

    def _init_metrics(self):
G
Guanghua Yu 已提交
120 121 122
        if self.mode == 'test':
            self._metrics = []
            return
123
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
K
Kaipeng Deng 已提交
124
        if self.cfg.metric == 'COCO':
W
wangxinxin08 已提交
125
            # TODO: bias should be unified
126
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
W
wangxinxin08 已提交
127 128
            self._metrics = [
                COCOMetric(
129 130 131
                    anno_file=self.dataset.get_anno(),
                    classwise=classwise,
                    bias=bias)
W
wangxinxin08 已提交
132
            ]
K
Kaipeng Deng 已提交
133 134 135
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
136
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
137
                    class_num=self.cfg.num_classes,
138 139
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
140
            ]
141 142 143 144 145 146 147 148 149
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
K
Kaipeng Deng 已提交
150
        else:
K
Kaipeng Deng 已提交
151 152
            logger.warn("Metric not support for metric type {}".format(
                self.cfg.metric))
K
Kaipeng Deng 已提交
153 154 155 156 157 158 159
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
160
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights(self, weights, weight_type='pretrain'):
        assert weight_type in ['pretrain', 'resume', 'finetune'], \
                "weight_type can only be 'pretrain', 'resume', 'finetune'"
        if weight_type == 'resume':
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
            logger.debug("Resume weights of epoch {}".format(self.start_epoch))
        else:
            self.start_epoch = 0
182
            load_pretrain_weight(self.model, weights, weight_type)
K
Kaipeng Deng 已提交
183 184 185
            logger.debug("Load {} weights {} to start training".format(
                weight_type, weights))

K
Kaipeng Deng 已提交
186
    def train(self, validate=False):
K
Kaipeng Deng 已提交
187 188
        assert self.mode == 'train', "Model not in 'train' mode"

189
        model = self.model
190 191 192 193 194
        if self.cfg.fleet:
            model = fleet.distributed_model(model)
            self.optimizer = fleet.distributed_optimizer(
                self.optimizer).user_defined_optimizer
        elif self._nranks > 1:
K
Kaipeng Deng 已提交
195
            model = paddle.DataParallel(self.model)
196 197 198 199 200

        # initial fp16
        if self.cfg.fp16:
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
201

K
Kaipeng Deng 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
215
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
216 217 218
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
219
            model.train()
K
Kaipeng Deng 已提交
220 221 222 223 224 225
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                self._compose_callback.on_step_begin(self.status)

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
                if self.cfg.fp16:
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
244 245 246 247 248 249

                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
250
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
251 252 253 254
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
F
Feng Ni 已提交
255
                iter_tic = time.time()
K
Kaipeng Deng 已提交
256

K
Kaipeng Deng 已提交
257 258
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
            if validate and (self._nranks < 2 or self._local_rank == 0) \
                    and (epoch_id % self.cfg.snapshot_epoch == 0 \
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
                with paddle.no_grad():
274
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
275 276 277
                    self._eval_with_loader(self._eval_loader)

    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
278 279 280
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
281 282 283
        self.status['mode'] = 'eval'
        self.model.eval()
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
303
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
304 305 306
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
307 308 309
    def evaluate(self):
        self._eval_with_loader(self.loader)

K
Kaipeng Deng 已提交
310 311 312 313 314 315 316
    def predict(self, images, draw_threshold=0.5, output_dir='output'):
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
317
        clsid2catid, catid2name = get_categories(self.cfg.metric, anno_file)
K
Kaipeng Deng 已提交
318

K
Kaipeng Deng 已提交
319 320 321
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
K
Kaipeng Deng 已提交
322 323 324 325 326 327
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
328 329
            for key, value in outs.items():
                outs[key] = value.numpy()
K
Kaipeng Deng 已提交
330 331 332 333 334 335 336

            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
337
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
338

339
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
340 341 342 343
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
344 345 346
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
                image = visualize_results(image, bbox_res, mask_res, segm_res,
K
Kaipeng Deng 已提交
347 348
                                          int(outs['im_id']), catid2name,
                                          draw_threshold)
349
                self.status['result_image'] = np.array(image.copy())
350 351
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

    def export(self, output_dir='output_inference'):
370
        self.model.eval()
K
Kaipeng Deng 已提交
371 372 373 374 375 376 377 378
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_shape = None
        if 'inputs_def' in self.cfg['TestReader']:
            inputs_def = self.cfg['TestReader']['inputs_def']
            image_shape = inputs_def.get('image_shape', None)
379
        # set image_shape=[3, -1, -1] as default
K
Kaipeng Deng 已提交
380
        if image_shape is None:
381
            image_shape = [3, -1, -1]
K
Kaipeng Deng 已提交
382

K
Kaipeng Deng 已提交
383 384
        self.model.eval()

K
Kaipeng Deng 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
                shape=[None] + image_shape, name='image'),
            "im_shape": InputSpec(
                shape=[None, 2], name='im_shape'),
            "scale_factor": InputSpec(
                shape=[None, 2], name='scale_factor')
        }]

        # dy2st and save model
G
guofei 已提交
400
        if self.slim is None or self.cfg['slim'] != 'QAT':
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = self._prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
            logger.info("Export model and saved in {}".format(save_dir))
        else:
            self.slim.save_quantized_model(
                self.model,
                os.path.join(save_dir, 'model'),
                input_spec=input_spec)
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

    def _prune_input_spec(self, input_spec, program, targets):
        # try to prune static program to figure out pruned input spec
        # so we perform following operations in static mode
        paddle.enable_static()
        pruned_input_spec = [{}]
        program = program.clone()
        program = program._prune(targets=targets)
        global_block = program.global_block()
        for name, spec in input_spec[0].items():
            try:
                v = global_block.var(name)
                pruned_input_spec[0][name] = spec
            except Exception:
                pass
        paddle.disable_static()
        return pruned_input_spec