trainer.py 14.6 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import random
import datetime
import numpy as np
from PIL import Image

import paddle
from paddle.distributed import ParallelEnv
from paddle.static import InputSpec

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
from ppdet.utils.visualizer import visualize_results
from ppdet.metrics import Metric, COCOMetric, VOCMetric, get_categories, get_infer_results
import ppdet.utils.stats as stats

from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer
from .export_utils import _dump_infer_config

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['Trainer']


class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
51
        self.optimizer = None
K
Kaipeng Deng 已提交
52 53 54

        # build model
        self.model = create(cfg.architecture)
55 56

        # model slim build
57
        if 'slim' in cfg and cfg.slim:
58 59 60 61 62
            if self.mode == 'train':
                self.load_weights(cfg.pretrain_weights, cfg.weight_type)
            slim = create(cfg.slim)
            slim(self.model)

K
Kaipeng Deng 已提交
63 64
        # build data loader
        self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]
K
Kaipeng Deng 已提交
65
        if self.mode == 'train':
K
Kaipeng Deng 已提交
66 67
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)
K
Kaipeng Deng 已提交
68 69 70 71 72 73 74 75
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
76 77 78 79 80 81 82 83

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr,
                                                        self.model.parameters())

K
Kaipeng Deng 已提交
84 85 86
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

K
Kaipeng Deng 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        self.status = {}

        self.start_epoch = 0
        self.end_epoch = cfg.epoch

        self._weights_loaded = False

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
        else:
            self._callbacks = []
            self._compose_callback = None

    def _init_metrics(self):
K
Kaipeng Deng 已提交
113 114 115 116 117 118 119 120 121
        if self.cfg.metric == 'COCO':
            self._metrics = [COCOMetric(anno_file=self.dataset.get_anno())]
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
                    anno_file=self.dataset.get_anno(),
                    class_num=self.cfg.num_classes,
                    map_type=self.cfg.map_type)
            ]
K
Kaipeng Deng 已提交
122
        else:
K
Kaipeng Deng 已提交
123 124
            logger.warn("Metric not support for metric type {}".format(
                self.cfg.metric))
K
Kaipeng Deng 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights(self, weights, weight_type='pretrain'):
        assert weight_type in ['pretrain', 'resume', 'finetune'], \
                "weight_type can only be 'pretrain', 'resume', 'finetune'"
        if weight_type == 'resume':
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
            logger.debug("Resume weights of epoch {}".format(self.start_epoch))
        else:
            self.start_epoch = 0
            load_pretrain_weight(self.model, weights,
                                 self.cfg.get('load_static_weights', False),
                                 weight_type)
            logger.debug("Load {} weights {} to start training".format(
                weight_type, weights))
        self._weights_loaded = True

K
Kaipeng Deng 已提交
161
    def train(self, validate=False):
K
Kaipeng Deng 已提交
162 163 164 165 166 167
        assert self.mode == 'train', "Model not in 'train' mode"

        # if no given weights loaded, load backbone pretrain weights as default
        if not self._weights_loaded:
            self.load_weights(self.cfg.pretrain_weights)

K
Kaipeng Deng 已提交
168 169
        if self._nranks > 1:
            model = paddle.DataParallel(self.model)
170 171
        else:
            model = self.model
K
Kaipeng Deng 已提交
172

K
Kaipeng Deng 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
186
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
187 188 189
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
190
            model.train()
K
Kaipeng Deng 已提交
191 192 193 194 195 196 197
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                self._compose_callback.on_step_begin(self.status)

                # model forward
K
Kaipeng Deng 已提交
198
                outputs = model(data)
K
Kaipeng Deng 已提交
199 200 201 202 203 204 205 206 207 208
                loss = outputs['loss']

                # model backward
                loss.backward()
                self.optimizer.step()
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
209
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
210 211 212 213
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
F
Feng Ni 已提交
214
                iter_tic = time.time()
K
Kaipeng Deng 已提交
215

K
Kaipeng Deng 已提交
216 217
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
            if validate and (self._nranks < 2 or self._local_rank == 0) \
                    and (epoch_id % self.cfg.snapshot_epoch == 0 \
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
                with paddle.no_grad():
                    self._eval_with_loader(self._eval_loader)

    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
236 237 238
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
239 240 241
        self.status['mode'] = 'eval'
        self.model.eval()
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic
        self._compose_callback.on_epoch_end(self.status)

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
265 266 267
    def evaluate(self):
        self._eval_with_loader(self.loader)

K
Kaipeng Deng 已提交
268 269 270 271 272 273 274
    def predict(self, images, draw_threshold=0.5, output_dir='output'):
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
275
        clsid2catid, catid2name = get_categories(self.cfg.metric, anno_file)
K
Kaipeng Deng 已提交
276

K
Kaipeng Deng 已提交
277 278 279
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
K
Kaipeng Deng 已提交
280 281 282 283 284 285
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
286 287
            for key, value in outs.items():
                outs[key] = value.numpy()
K
Kaipeng Deng 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300

            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
                end = start + bbox_num[i]

                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
301 302 303
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
                image = visualize_results(image, bbox_res, mask_res, segm_res,
K
Kaipeng Deng 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
                                          int(outs['im_id']), catid2name,
                                          draw_threshold)

                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

    def export(self, output_dir='output_inference'):
325
        self.model.eval()
K
Kaipeng Deng 已提交
326 327 328 329 330 331 332 333 334 335 336
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_shape = None
        if 'inputs_def' in self.cfg['TestReader']:
            inputs_def = self.cfg['TestReader']['inputs_def']
            image_shape = inputs_def.get('image_shape', None)
        if image_shape is None:
            image_shape = [3, None, None]

K
Kaipeng Deng 已提交
337 338
        self.model.eval()

K
Kaipeng Deng 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
                shape=[None] + image_shape, name='image'),
            "im_shape": InputSpec(
                shape=[None, 2], name='im_shape'),
            "scale_factor": InputSpec(
                shape=[None, 2], name='scale_factor')
        }]

        # dy2st and save model
        static_model = paddle.jit.to_static(self.model, input_spec=input_spec)
355 356 357 358 359 360 361 362 363
        # NOTE: dy2st do not pruned program, but jit.save will prune program
        # input spec, prune input spec here and save with pruned input spec
        pruned_input_spec = self._prune_input_spec(
            input_spec, static_model.forward.main_program,
            static_model.forward.outputs)
        paddle.jit.save(
            static_model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
K
Kaipeng Deng 已提交
364
        logger.info("Export model and saved in {}".format(save_dir))
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

    def _prune_input_spec(self, input_spec, program, targets):
        # try to prune static program to figure out pruned input spec
        # so we perform following operations in static mode
        paddle.enable_static()
        pruned_input_spec = [{}]
        program = program.clone()
        program = program._prune(targets=targets)
        global_block = program.global_block()
        for name, spec in input_spec[0].items():
            try:
                v = global_block.var(name)
                pruned_input_spec[0][name] = spec
            except Exception:
                pass
        paddle.disable_static()
        return pruned_input_spec