trainer.py 16.4 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import random
import datetime
import numpy as np
from PIL import Image

import paddle
27 28
from paddle.distributed import ParallelEnv, fleet
from paddle import amp
K
Kaipeng Deng 已提交
29 30 31 32 33
from paddle.static import InputSpec

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
from ppdet.utils.visualizer import visualize_results
34
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_categories, get_infer_results
K
Kaipeng Deng 已提交
35 36
import ppdet.utils.stats as stats

37
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval
K
Kaipeng Deng 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51
from .export_utils import _dump_infer_config

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['Trainer']


class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
52
        self.optimizer = None
53
        self.slim = None
K
Kaipeng Deng 已提交
54 55 56

        # build model
        self.model = create(cfg.architecture)
57 58

        # model slim build
59
        if 'slim' in cfg and cfg.slim:
60 61
            if self.mode == 'train':
                self.load_weights(cfg.pretrain_weights, cfg.weight_type)
62 63
            self.slim = create(cfg.slim)
            self.slim(self.model)
64

K
Kaipeng Deng 已提交
65 66
        # build data loader
        self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]
K
Kaipeng Deng 已提交
67
        if self.mode == 'train':
K
Kaipeng Deng 已提交
68 69
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)
K
Kaipeng Deng 已提交
70 71 72 73 74 75 76 77
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
78 79 80 81 82 83 84 85

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr,
                                                        self.model.parameters())

K
Kaipeng Deng 已提交
86 87 88
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

K
Kaipeng Deng 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        self.status = {}

        self.start_epoch = 0
        self.end_epoch = cfg.epoch

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
107 108
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
109 110 111 112 113 114
            self._compose_callback = ComposeCallback(self._callbacks)
        else:
            self._callbacks = []
            self._compose_callback = None

    def _init_metrics(self):
G
Guanghua Yu 已提交
115 116 117
        if self.mode == 'test':
            self._metrics = []
            return
K
Kaipeng Deng 已提交
118
        if self.cfg.metric == 'COCO':
W
wangxinxin08 已提交
119
            # TODO: bias should be unified
120
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
W
wangxinxin08 已提交
121 122
            self._metrics = [
                COCOMetric(
123
                    anno_file=self.dataset.get_anno(), bias=bias)
W
wangxinxin08 已提交
124
            ]
K
Kaipeng Deng 已提交
125 126 127 128 129 130 131
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
                    anno_file=self.dataset.get_anno(),
                    class_num=self.cfg.num_classes,
                    map_type=self.cfg.map_type)
            ]
132 133 134 135 136 137 138 139 140
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
K
Kaipeng Deng 已提交
141
        else:
K
Kaipeng Deng 已提交
142 143
            logger.warn("Metric not support for metric type {}".format(
                self.cfg.metric))
K
Kaipeng Deng 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights(self, weights, weight_type='pretrain'):
        assert weight_type in ['pretrain', 'resume', 'finetune'], \
                "weight_type can only be 'pretrain', 'resume', 'finetune'"
        if weight_type == 'resume':
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
            logger.debug("Resume weights of epoch {}".format(self.start_epoch))
        else:
            self.start_epoch = 0
            load_pretrain_weight(self.model, weights,
                                 self.cfg.get('load_static_weights', False),
                                 weight_type)
            logger.debug("Load {} weights {} to start training".format(
                weight_type, weights))

K
Kaipeng Deng 已提交
179
    def train(self, validate=False):
K
Kaipeng Deng 已提交
180 181
        assert self.mode == 'train', "Model not in 'train' mode"

182
        model = self.model
183 184 185 186 187
        if self.cfg.fleet:
            model = fleet.distributed_model(model)
            self.optimizer = fleet.distributed_optimizer(
                self.optimizer).user_defined_optimizer
        elif self._nranks > 1:
K
Kaipeng Deng 已提交
188
            model = paddle.DataParallel(self.model)
189 190 191 192 193

        # initial fp16
        if self.cfg.fp16:
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
194

K
Kaipeng Deng 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
208
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
209 210 211
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
212
            model.train()
K
Kaipeng Deng 已提交
213 214 215 216 217 218
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                self._compose_callback.on_step_begin(self.status)

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
                if self.cfg.fp16:
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
237 238 239 240 241 242

                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
243
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
244 245 246 247
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
F
Feng Ni 已提交
248
                iter_tic = time.time()
K
Kaipeng Deng 已提交
249

K
Kaipeng Deng 已提交
250 251
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
            if validate and (self._nranks < 2 or self._local_rank == 0) \
                    and (epoch_id % self.cfg.snapshot_epoch == 0 \
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
                with paddle.no_grad():
                    self._eval_with_loader(self._eval_loader)

    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
270 271 272
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
273 274 275
        self.status['mode'] = 'eval'
        self.model.eval()
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic
        self._compose_callback.on_epoch_end(self.status)

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
299 300 301
    def evaluate(self):
        self._eval_with_loader(self.loader)

K
Kaipeng Deng 已提交
302 303 304 305 306 307 308
    def predict(self, images, draw_threshold=0.5, output_dir='output'):
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
309
        clsid2catid, catid2name = get_categories(self.cfg.metric, anno_file)
K
Kaipeng Deng 已提交
310

K
Kaipeng Deng 已提交
311 312 313
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
K
Kaipeng Deng 已提交
314 315 316 317 318 319
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
320 321
            for key, value in outs.items():
                outs[key] = value.numpy()
K
Kaipeng Deng 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334

            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
                end = start + bbox_num[i]

                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
335 336 337
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
                image = visualize_results(image, bbox_res, mask_res, segm_res,
K
Kaipeng Deng 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
                                          int(outs['im_id']), catid2name,
                                          draw_threshold)

                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

    def export(self, output_dir='output_inference'):
359
        self.model.eval()
K
Kaipeng Deng 已提交
360 361 362 363 364 365 366 367
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_shape = None
        if 'inputs_def' in self.cfg['TestReader']:
            inputs_def = self.cfg['TestReader']['inputs_def']
            image_shape = inputs_def.get('image_shape', None)
368
        # set image_shape=[3, -1, -1] as default
K
Kaipeng Deng 已提交
369
        if image_shape is None:
370
            image_shape = [3, -1, -1]
K
Kaipeng Deng 已提交
371

K
Kaipeng Deng 已提交
372 373
        self.model.eval()

K
Kaipeng Deng 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
                shape=[None] + image_shape, name='image'),
            "im_shape": InputSpec(
                shape=[None, 2], name='im_shape'),
            "scale_factor": InputSpec(
                shape=[None, 2], name='scale_factor')
        }]

        # dy2st and save model
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
        if self.slim is None or self.cfg['slim'] != 'quant':
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = self._prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
            logger.info("Export model and saved in {}".format(save_dir))
        else:
            self.slim.save_quantized_model(
                self.model,
                os.path.join(save_dir, 'model'),
                input_spec=input_spec)
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

    def _prune_input_spec(self, input_spec, program, targets):
        # try to prune static program to figure out pruned input spec
        # so we perform following operations in static mode
        paddle.enable_static()
        pruned_input_spec = [{}]
        program = program.clone()
        program = program._prune(targets=targets)
        global_block = program.global_block()
        for name, spec in input_spec[0].items():
            try:
                v = global_block.var(name)
                pruned_input_spec[0][name] = spec
            except Exception:
                pass
        paddle.disable_static()
        return pruned_input_spec