trainer.py 16.1 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import random
import datetime
import numpy as np
from PIL import Image

import paddle
27 28
from paddle.distributed import ParallelEnv, fleet
from paddle import amp
K
Kaipeng Deng 已提交
29 30 31 32 33
from paddle.static import InputSpec

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
from ppdet.utils.visualizer import visualize_results
34
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_categories, get_infer_results
K
Kaipeng Deng 已提交
35 36
import ppdet.utils.stats as stats

37
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval
K
Kaipeng Deng 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51
from .export_utils import _dump_infer_config

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['Trainer']


class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
52
        self.optimizer = None
K
Kaipeng Deng 已提交
53 54 55

        # build model
        self.model = create(cfg.architecture)
56 57

        # model slim build
58
        if 'slim' in cfg and cfg.slim:
59 60 61 62 63
            if self.mode == 'train':
                self.load_weights(cfg.pretrain_weights, cfg.weight_type)
            slim = create(cfg.slim)
            slim(self.model)

K
Kaipeng Deng 已提交
64 65
        # build data loader
        self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]
K
Kaipeng Deng 已提交
66
        if self.mode == 'train':
K
Kaipeng Deng 已提交
67 68
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)
K
Kaipeng Deng 已提交
69 70 71 72 73 74 75 76
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
77 78 79 80 81 82 83 84

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr,
                                                        self.model.parameters())

K
Kaipeng Deng 已提交
85 86 87
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

K
Kaipeng Deng 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        self.status = {}

        self.start_epoch = 0
        self.end_epoch = cfg.epoch

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
106 107
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
108 109 110 111 112 113
            self._compose_callback = ComposeCallback(self._callbacks)
        else:
            self._callbacks = []
            self._compose_callback = None

    def _init_metrics(self):
G
Guanghua Yu 已提交
114 115 116
        if self.mode == 'test':
            self._metrics = []
            return
K
Kaipeng Deng 已提交
117
        if self.cfg.metric == 'COCO':
W
wangxinxin08 已提交
118
            # TODO: bias should be unified
119
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
W
wangxinxin08 已提交
120 121
            self._metrics = [
                COCOMetric(
122
                    anno_file=self.dataset.get_anno(), bias=bias)
W
wangxinxin08 已提交
123
            ]
K
Kaipeng Deng 已提交
124 125 126 127 128 129 130
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
                    anno_file=self.dataset.get_anno(),
                    class_num=self.cfg.num_classes,
                    map_type=self.cfg.map_type)
            ]
131 132 133 134 135 136 137 138 139
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
K
Kaipeng Deng 已提交
140
        else:
K
Kaipeng Deng 已提交
141 142
            logger.warn("Metric not support for metric type {}".format(
                self.cfg.metric))
K
Kaipeng Deng 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights(self, weights, weight_type='pretrain'):
        assert weight_type in ['pretrain', 'resume', 'finetune'], \
                "weight_type can only be 'pretrain', 'resume', 'finetune'"
        if weight_type == 'resume':
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
            logger.debug("Resume weights of epoch {}".format(self.start_epoch))
        else:
            self.start_epoch = 0
            load_pretrain_weight(self.model, weights,
                                 self.cfg.get('load_static_weights', False),
                                 weight_type)
            logger.debug("Load {} weights {} to start training".format(
                weight_type, weights))

K
Kaipeng Deng 已提交
178
    def train(self, validate=False):
K
Kaipeng Deng 已提交
179 180
        assert self.mode == 'train', "Model not in 'train' mode"

181
        model = self.model
182 183 184 185 186
        if self.cfg.fleet:
            model = fleet.distributed_model(model)
            self.optimizer = fleet.distributed_optimizer(
                self.optimizer).user_defined_optimizer
        elif self._nranks > 1:
K
Kaipeng Deng 已提交
187
            model = paddle.DataParallel(self.model)
188 189 190 191 192

        # initial fp16
        if self.cfg.fp16:
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
193

K
Kaipeng Deng 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
207
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
208 209 210
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
211
            model.train()
K
Kaipeng Deng 已提交
212 213 214 215 216 217
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                self._compose_callback.on_step_begin(self.status)

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                if self.cfg.fp16:
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
236 237 238 239 240 241

                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
242
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
243 244 245 246
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
F
Feng Ni 已提交
247
                iter_tic = time.time()
K
Kaipeng Deng 已提交
248

K
Kaipeng Deng 已提交
249 250
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
            if validate and (self._nranks < 2 or self._local_rank == 0) \
                    and (epoch_id % self.cfg.snapshot_epoch == 0 \
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
                with paddle.no_grad():
                    self._eval_with_loader(self._eval_loader)

    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
269 270 271
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
272 273 274
        self.status['mode'] = 'eval'
        self.model.eval()
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic
        self._compose_callback.on_epoch_end(self.status)

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
298 299 300
    def evaluate(self):
        self._eval_with_loader(self.loader)

K
Kaipeng Deng 已提交
301 302 303 304 305 306 307
    def predict(self, images, draw_threshold=0.5, output_dir='output'):
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
308
        clsid2catid, catid2name = get_categories(self.cfg.metric, anno_file)
K
Kaipeng Deng 已提交
309

K
Kaipeng Deng 已提交
310 311 312
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
K
Kaipeng Deng 已提交
313 314 315 316 317 318
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
319 320
            for key, value in outs.items():
                outs[key] = value.numpy()
K
Kaipeng Deng 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333

            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
                end = start + bbox_num[i]

                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
334 335 336
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
                image = visualize_results(image, bbox_res, mask_res, segm_res,
K
Kaipeng Deng 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
                                          int(outs['im_id']), catid2name,
                                          draw_threshold)

                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

    def export(self, output_dir='output_inference'):
358
        self.model.eval()
K
Kaipeng Deng 已提交
359 360 361 362 363 364 365 366
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_shape = None
        if 'inputs_def' in self.cfg['TestReader']:
            inputs_def = self.cfg['TestReader']['inputs_def']
            image_shape = inputs_def.get('image_shape', None)
367
        # set image_shape=[3, -1, -1] as default
K
Kaipeng Deng 已提交
368
        if image_shape is None:
369
            image_shape = [3, -1, -1]
K
Kaipeng Deng 已提交
370

K
Kaipeng Deng 已提交
371 372
        self.model.eval()

K
Kaipeng Deng 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
                shape=[None] + image_shape, name='image'),
            "im_shape": InputSpec(
                shape=[None, 2], name='im_shape'),
            "scale_factor": InputSpec(
                shape=[None, 2], name='scale_factor')
        }]

        # dy2st and save model
        static_model = paddle.jit.to_static(self.model, input_spec=input_spec)
389 390 391 392 393 394 395 396 397
        # NOTE: dy2st do not pruned program, but jit.save will prune program
        # input spec, prune input spec here and save with pruned input spec
        pruned_input_spec = self._prune_input_spec(
            input_spec, static_model.forward.main_program,
            static_model.forward.outputs)
        paddle.jit.save(
            static_model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
K
Kaipeng Deng 已提交
398
        logger.info("Export model and saved in {}".format(save_dir))
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

    def _prune_input_spec(self, input_spec, program, targets):
        # try to prune static program to figure out pruned input spec
        # so we perform following operations in static mode
        paddle.enable_static()
        pruned_input_spec = [{}]
        program = program.clone()
        program = program._prune(targets=targets)
        global_block = program.global_block()
        for name, spec in input_spec[0].items():
            try:
                v = global_block.var(name)
                pruned_input_spec[0][name] = spec
            except Exception:
                pass
        paddle.disable_static()
        return pruned_input_spec