tracker.py 26.2 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import glob
F
Feng Ni 已提交
21
import re
G
George Ni 已提交
22
import paddle
23
import paddle.nn as nn
G
George Ni 已提交
24
import numpy as np
F
Feng Ni 已提交
25
from tqdm import tqdm
26
from collections import defaultdict
G
George Ni 已提交
27 28 29

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
G
George Ni 已提交
30
from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
31
from ppdet.modeling.mot.utils import MOTTimer, load_det_results, write_mot_results, save_vis_results
F
Feng Ni 已提交
32
from ppdet.modeling.mot.tracker import JDETracker, DeepSORTTracker, OCSORTTracker
33
from ppdet.modeling.architectures import YOLOX
F
Feng Ni 已提交
34
from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric, MCMOTMetric
35
from ppdet.data.source.category import get_categories
G
George Ni 已提交
36 37 38 39 40 41 42
import ppdet.utils.stats as stats

from .callbacks import Callback, ComposeCallback

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

43 44 45 46 47
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
MOT_ARCH_JDE = ['JDE', 'FairMOT']
MOT_ARCH_SDE = ['DeepSORT', 'ByteTrack']
MOT_DATA_TYPE = ['mot', 'mcmot', 'kitti']

G
George Ni 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
__all__ = ['Tracker']


class Tracker(object):
    def __init__(self, cfg, mode='eval'):
        self.cfg = cfg
        assert mode.lower() in ['test', 'eval'], \
                "mode should be 'test' or 'eval'"
        self.mode = mode.lower()
        self.optimizer = None

        # build MOT data loader
        self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]

        # build model
        self.model = create(cfg.architecture)

65 66 67 68 69 70
        if isinstance(self.model.detector, YOLOX):
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch

71 72 73 74 75 76 77
        anno_file = self.dataset.get_anno()
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
        self.ids2names = []
        for k, v in catid2name.items():
            self.ids2names.append(v)

G
George Ni 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        self.status = {}
        self.start_epoch = 0

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        self._callbacks = []
        self._compose_callback = None

    def _init_metrics(self):
        if self.mode in ['test']:
            self._metrics = []
            return

        if self.cfg.metric == 'MOT':
            self._metrics = [MOTMetric(), ]
99 100
        elif self.cfg.metric == 'MCMOT':
            self._metrics = [MCMOTMetric(self.cfg.num_classes), ]
G
George Ni 已提交
101 102
        elif self.cfg.metric == 'KITTI':
            self._metrics = [KITTIMOTMetric(), ]
G
George Ni 已提交
103
        else:
104
            logger.warning("Metric not support for metric type {}".format(
G
George Ni 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
                self.cfg.metric))
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights_jde(self, weights):
        load_weight(self.model, weights, self.optimizer)

    def load_weights_sde(self, det_weights, reid_weights):
131 132 133 134
        with_detector = self.model.detector is not None
        with_reid = self.model.reid is not None

        if with_detector:
135
            load_weight(self.model.detector, det_weights)
136 137
            if with_reid:
                load_weight(self.model.reid, reid_weights)
138
        else:
139
            load_weight(self.model.reid, reid_weights)
G
George Ni 已提交
140 141 142 143 144

    def _eval_seq_jde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
145 146
                      frame_rate=30,
                      draw_threshold=0):
G
George Ni 已提交
147 148 149 150 151
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)

152
        timer = MOTTimer()
G
George Ni 已提交
153 154 155
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
156 157
        results = defaultdict(list)  # support single class and multi classes

F
Feng Ni 已提交
158
        for step_id, data in enumerate(tqdm(dataloader)):
G
George Ni 已提交
159 160 161
            self.status['step_id'] = step_id
            # forward
            timer.tic()
162
            pred_dets, pred_embs = self.model(data)
G
George Ni 已提交
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
            pred_dets, pred_embs = pred_dets.numpy(), pred_embs.numpy()
            online_targets_dict = self.model.tracker.update(pred_dets,
                                                            pred_embs)
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
            for cls_id in range(self.cfg.num_classes):
                online_targets = online_targets_dict[cls_id]
                for t in online_targets:
                    tlwh = t.tlwh
                    tid = t.track_id
                    tscore = t.score
                    if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                    if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > tracker.vertical_ratio:
                        continue
                    online_tlwhs[cls_id].append(tlwh)
                    online_ids[cls_id].append(tid)
                    online_scores[cls_id].append(tscore)
                # save results
                results[cls_id].append(
                    (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
                     online_ids[cls_id]))
G
George Ni 已提交
187

188 189 190
            timer.toc()
            save_vis_results(data, frame_id, online_ids, online_tlwhs,
                             online_scores, timer.average_time, show_image,
191
                             save_dir, self.cfg.num_classes, self.ids2names)
G
George Ni 已提交
192 193 194 195 196 197 198 199 200
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def _eval_seq_sde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
                      frame_rate=30,
F
Feng Ni 已提交
201
                      seq_name='',
202
                      scaled=False,
203 204
                      det_file='',
                      draw_threshold=0):
G
George Ni 已提交
205 206 207
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        use_detector = False if not self.model.detector else True
208
        use_reid = False if not self.model.reid else True
G
George Ni 已提交
209

210
        timer = MOTTimer()
F
Feng Ni 已提交
211
        results = defaultdict(list)
G
George Ni 已提交
212 213 214
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
215 216
        if use_reid:
            self.model.reid.eval()
G
George Ni 已提交
217 218 219 220 221
        if not use_detector:
            dets_list = load_det_results(det_file, len(dataloader))
            logger.info('Finish loading detection results file {}.'.format(
                det_file))

222
        tracker = self.model.tracker
F
Feng Ni 已提交
223
        for step_id, data in enumerate(tqdm(dataloader)):
G
George Ni 已提交
224
            self.status['step_id'] = step_id
F
Feng Ni 已提交
225 226 227 228
            ori_image = data['ori_image']  # [bs, H, W, 3]
            ori_image_shape = data['ori_image'].shape[1:3]
            # ori_image_shape: [H, W]

G
George Ni 已提交
229
            input_shape = data['image'].shape[2:]
F
Feng Ni 已提交
230 231 232 233 234 235 236 237 238
            # input_shape: [h, w], before data transforms, set in model config

            im_shape = data['im_shape'][0].numpy()
            # im_shape: [new_h, new_w], after data transforms
            scale_factor = data['scale_factor'][0].numpy()

            empty_detections = False
            # when it has no detected bboxes, will not inference reid model 
            # and if visualize, use original image instead
239 240

            # forward
G
George Ni 已提交
241 242 243
            timer.tic()
            if not use_detector:
                dets = dets_list[frame_id]
F
Feng Ni 已提交
244
                bbox_tlwh = np.array(dets['bbox'], dtype='float32')
G
George Ni 已提交
245
                if bbox_tlwh.shape[0] > 0:
246
                    # detector outputs: pred_cls_ids, pred_scores, pred_bboxes
F
Feng Ni 已提交
247 248 249
                    pred_cls_ids = np.array(dets['cls_id'], dtype='float32')
                    pred_scores = np.array(dets['score'], dtype='float32')
                    pred_bboxes = np.concatenate(
G
George Ni 已提交
250 251 252 253
                        (bbox_tlwh[:, 0:2],
                         bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
                        axis=1)
                else:
254 255 256
                    logger.warning(
                        'Frame {} has not object, try to modify score threshold.'.
                        format(frame_id))
F
Feng Ni 已提交
257
                    empty_detections = True
G
George Ni 已提交
258 259
            else:
                outs = self.model.detector(data)
F
Feng Ni 已提交
260 261 262
                outs['bbox'] = outs['bbox'].numpy()
                outs['bbox_num'] = outs['bbox_num'].numpy()

263
                if len(outs['bbox']) > 0 and empty_detections == False:
264 265 266
                    # detector outputs: pred_cls_ids, pred_scores, pred_bboxes
                    pred_cls_ids = outs['bbox'][:, 0:1]
                    pred_scores = outs['bbox'][:, 1:2]
267
                    if not scaled:
F
Feng Ni 已提交
268 269 270 271
                        # Note: scaled=False only in JDE YOLOv3 or other detectors
                        # with LetterBoxResize and JDEBBoxPostProcess.
                        #
                        # 'scaled' means whether the coords after detector outputs
272 273
                        # have been scaled back to the original image, set True 
                        # in general detector, set False in JDE YOLOv3.
274 275 276 277 278
                        pred_bboxes = scale_coords(outs['bbox'][:, 2:],
                                                   input_shape, im_shape,
                                                   scale_factor)
                    else:
                        pred_bboxes = outs['bbox'][:, 2:]
279 280
                    pred_dets_old = np.concatenate(
                        (pred_cls_ids, pred_scores, pred_bboxes), axis=1)
G
George Ni 已提交
281
                else:
282
                    logger.warning(
F
Feng Ni 已提交
283
                        'Frame {} has not detected object, try to modify score threshold.'.
284
                        format(frame_id))
F
Feng Ni 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
                    empty_detections = True

            if not empty_detections:
                pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape)
                if len(keep_idx[0]) == 0:
                    logger.warning(
                        'Frame {} has not detected object left after clip_box.'.
                        format(frame_id))
                    empty_detections = True

            if empty_detections:
                timer.toc()
                # if visualize, use original image instead
                online_ids, online_tlwhs, online_scores = None, None, None
                save_vis_results(data, frame_id, online_ids, online_tlwhs,
                                 online_scores, timer.average_time, show_image,
301
                                 save_dir, self.cfg.num_classes, self.ids2names)
F
Feng Ni 已提交
302 303 304
                frame_id += 1
                # thus will not inference reid model
                continue
G
George Ni 已提交
305

F
Feng Ni 已提交
306
            pred_cls_ids = pred_cls_ids[keep_idx[0]]
307
            pred_scores = pred_scores[keep_idx[0]]
F
Feng Ni 已提交
308
            pred_dets = np.concatenate(
309 310 311 312 313 314 315 316 317 318 319
                (pred_cls_ids, pred_scores, pred_xyxys), axis=1)

            if use_reid:
                crops = get_crops(
                    pred_xyxys,
                    ori_image,
                    w=tracker.input_size[0],
                    h=tracker.input_size[1])
                crops = paddle.to_tensor(crops)

                data.update({'crops': crops})
320
                pred_embs = self.model(data)['embeddings'].numpy()
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
            else:
                pred_embs = None

            if isinstance(tracker, DeepSORTTracker):
                online_tlwhs, online_scores, online_ids = [], [], []
                tracker.predict()
                online_targets = tracker.update(pred_dets, pred_embs)
                for t in online_targets:
                    if not t.is_confirmed() or t.time_since_update > 1:
                        continue
                    tlwh = t.to_tlwh()
                    tscore = t.score
                    tid = t.track_id
                    if tscore < draw_threshold: continue
                    if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                    if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > tracker.vertical_ratio:
                        continue
                    online_tlwhs.append(tlwh)
                    online_scores.append(tscore)
                    online_ids.append(tid)
                timer.toc()

                # save results
                results[0].append(
                    (frame_id + 1, online_tlwhs, online_scores, online_ids))
                save_vis_results(data, frame_id, online_ids, online_tlwhs,
F
Feng Ni 已提交
348
                                 online_scores, timer.average_time, show_image,
349
                                 save_dir, self.cfg.num_classes, self.ids2names)
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

            elif isinstance(tracker, JDETracker):
                # trick hyperparams only used for MOTChallenge (MOT17, MOT20) Test-set
                tracker.track_buffer, tracker.conf_thres = get_trick_hyperparams(
                    seq_name, tracker.track_buffer, tracker.conf_thres)

                online_targets_dict = tracker.update(pred_dets_old, pred_embs)
                online_tlwhs = defaultdict(list)
                online_scores = defaultdict(list)
                online_ids = defaultdict(list)
                for cls_id in range(self.cfg.num_classes):
                    online_targets = online_targets_dict[cls_id]
                    for t in online_targets:
                        tlwh = t.tlwh
                        tid = t.track_id
                        tscore = t.score
                        if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                        if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                                3] > tracker.vertical_ratio:
                            continue
                        online_tlwhs[cls_id].append(tlwh)
                        online_ids[cls_id].append(tid)
                        online_scores[cls_id].append(tscore)
                    # save results
                    results[cls_id].append(
F
Feng Ni 已提交
375 376
                        (frame_id + 1, online_tlwhs[cls_id],
                         online_scores[cls_id], online_ids[cls_id]))
377 378
                timer.toc()
                save_vis_results(data, frame_id, online_ids, online_tlwhs,
F
Feng Ni 已提交
379
                                 online_scores, timer.average_time, show_image,
380
                                 save_dir, self.cfg.num_classes, self.ids2names)
F
Feng Ni 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
            elif isinstance(tracker, OCSORTTracker):
                # OC_SORT Tracker
                online_targets = tracker.update(pred_dets_old, pred_embs)
                online_tlwhs = []
                online_ids = []
                online_scores = []
                for t in online_targets:
                    tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]]
                    tscore = float(t[4])
                    tid = int(t[5])
                    if tlwh[2] * tlwh[3] > 0:
                        online_tlwhs.append(tlwh)
                        online_ids.append(tid)
                        online_scores.append(tscore)
                timer.toc()
                # save results
                results[0].append(
                    (frame_id + 1, online_tlwhs, online_scores, online_ids))
                save_vis_results(data, frame_id, online_ids, online_tlwhs,
                                 online_scores, timer.average_time, show_image,
401
                                 save_dir, self.cfg.num_classes, self.ids2names)
F
Feng Ni 已提交
402 403
            else:
                raise ValueError(tracker)
G
George Ni 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def mot_evaluate(self,
                     data_root,
                     seqs,
                     output_dir,
                     data_type='mot',
                     model_type='JDE',
                     save_images=False,
                     save_videos=False,
                     show_image=False,
417
                     scaled=False,
G
George Ni 已提交
418 419 420 421
                     det_results_dir=''):
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
422
        assert data_type in MOT_DATA_TYPE, \
423
            "data_type should be 'mot', 'mcmot' or 'kitti'"
424 425
        assert model_type in MOT_ARCH, \
            "model_type should be 'JDE', 'DeepSORT', 'FairMOT' or 'ByteTrack'"
G
George Ni 已提交
426 427 428 429 430

        # run tracking
        n_frame = 0
        timer_avgs, timer_calls = [], []
        for seq in seqs:
431 432 433 434
            infer_dir = os.path.join(data_root, seq)
            if not os.path.exists(infer_dir) or not os.path.isdir(infer_dir):
                logger.warning("Seq {} error, {} has no images.".format(
                    seq, infer_dir))
G
George Ni 已提交
435
                continue
436 437 438 439
            if os.path.exists(os.path.join(infer_dir, 'img1')):
                infer_dir = os.path.join(infer_dir, 'img1')

            frame_rate = 30
G
George Ni 已提交
440
            seqinfo = os.path.join(data_root, seq, 'seqinfo.ini')
441 442 443 444
            if os.path.exists(seqinfo):
                meta_info = open(seqinfo).read()
                frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
                                           meta_info.find('\nseqLength')])
G
George Ni 已提交
445

G
George Ni 已提交
446 447
            save_dir = os.path.join(output_dir, 'mot_outputs',
                                    seq) if save_images or save_videos else None
F
Feng Ni 已提交
448
            logger.info('Evaluate seq: {}'.format(seq))
G
George Ni 已提交
449

450
            self.dataset.set_images(self.get_infer_images(infer_dir))
G
George Ni 已提交
451 452 453
            dataloader = create('EvalMOTReader')(self.dataset, 0)

            result_filename = os.path.join(result_root, '{}.txt'.format(seq))
454

G
George Ni 已提交
455
            with paddle.no_grad():
456
                if model_type in MOT_ARCH_JDE:
G
George Ni 已提交
457 458 459 460 461
                    results, nf, ta, tc = self._eval_seq_jde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate)
462
                elif model_type in MOT_ARCH_SDE:
G
George Ni 已提交
463 464 465 466 467
                    results, nf, ta, tc = self._eval_seq_sde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate,
F
Feng Ni 已提交
468
                        seq_name=seq,
469
                        scaled=scaled,
G
George Ni 已提交
470 471 472 473
                        det_file=os.path.join(det_results_dir,
                                              '{}.txt'.format(seq)))
                else:
                    raise ValueError(model_type)
G
George Ni 已提交
474

475 476
            write_mot_results(result_filename, results, data_type,
                              self.cfg.num_classes)
G
George Ni 已提交
477 478 479 480 481
            n_frame += nf
            timer_avgs.append(ta)
            timer_calls.append(tc)

            if save_videos:
G
George Ni 已提交
482 483
                output_video_path = os.path.join(save_dir, '..',
                                                 '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
484
                cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
                    save_dir, output_video_path)
                os.system(cmd_str)
                logger.info('Save video in {}.'.format(output_video_path))

            # update metrics
            for metric in self._metrics:
                metric.update(data_root, seq, data_type, result_root,
                              result_filename)

        timer_avgs = np.asarray(timer_avgs)
        timer_calls = np.asarray(timer_calls)
        all_time = np.dot(timer_avgs, timer_calls)
        avg_time = all_time / np.sum(timer_calls)
        logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
            all_time, 1.0 / avg_time))

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def get_infer_images(self, infer_dir):
        assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
        images = set()
        assert os.path.isdir(infer_dir), \
            "infer_dir {} is not a directory".format(infer_dir)
        exts = ['jpg', 'jpeg', 'png', 'bmp']
        exts += [ext.upper() for ext in exts]
        for ext in exts:
            images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
        images = list(images)
        images.sort()
        assert len(images) > 0, "no image found in {}".format(infer_dir)
        logger.info("Found {} inference images in total.".format(len(images)))
        return images

F
Feng Ni 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536
    def mot_predict_seq(self,
                        video_file,
                        frame_rate,
                        image_dir,
                        output_dir,
                        data_type='mot',
                        model_type='JDE',
                        save_images=False,
                        save_videos=True,
                        show_image=False,
                        scaled=False,
                        det_results_dir='',
                        draw_threshold=0.5):
G
George Ni 已提交
537 538 539 540 541 542 543
        assert video_file is not None or image_dir is not None, \
            "--video_file or --image_dir should be set."
        assert video_file is None or os.path.isfile(video_file), \
                "{} is not a file".format(video_file)
        assert image_dir is None or os.path.isdir(image_dir), \
                "{} is not a directory".format(image_dir)

G
George Ni 已提交
544 545 546
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
547
        assert data_type in MOT_DATA_TYPE, \
548
            "data_type should be 'mot', 'mcmot' or 'kitti'"
549 550
        assert model_type in MOT_ARCH, \
            "model_type should be 'JDE', 'DeepSORT', 'FairMOT' or 'ByteTrack'"
G
George Ni 已提交
551

G
George Ni 已提交
552 553 554
        # run tracking        
        if video_file:
            seq = video_file.split('/')[-1].split('.')[0]
555
            self.dataset.set_video(video_file, frame_rate)
G
George Ni 已提交
556 557 558
            logger.info('Starting tracking video {}'.format(video_file))
        elif image_dir:
            seq = image_dir.split('/')[-1].split('.')[0]
F
Feng Ni 已提交
559 560
            if os.path.exists(os.path.join(image_dir, 'img1')):
                image_dir = os.path.join(image_dir, 'img1')
G
George Ni 已提交
561 562 563 564 565 566 567 568 569 570
            images = [
                '{}/{}'.format(image_dir, x) for x in os.listdir(image_dir)
            ]
            images.sort()
            self.dataset.set_images(images)
            logger.info('Starting tracking folder {}, found {} images'.format(
                image_dir, len(images)))
        else:
            raise ValueError('--video_file or --image_dir should be set.')

G
George Ni 已提交
571 572 573 574 575
        save_dir = os.path.join(output_dir, 'mot_outputs',
                                seq) if save_images or save_videos else None

        dataloader = create('TestMOTReader')(self.dataset, 0)
        result_filename = os.path.join(result_root, '{}.txt'.format(seq))
576 577
        if frame_rate == -1:
            frame_rate = self.dataset.frame_rate
G
George Ni 已提交
578

G
George Ni 已提交
579
        with paddle.no_grad():
580
            if model_type in MOT_ARCH_JDE:
G
George Ni 已提交
581 582 583 584
                results, nf, ta, tc = self._eval_seq_jde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
585 586
                    frame_rate=frame_rate,
                    draw_threshold=draw_threshold)
587
            elif model_type in MOT_ARCH_SDE:
G
George Ni 已提交
588 589 590 591 592
                results, nf, ta, tc = self._eval_seq_sde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
                    frame_rate=frame_rate,
F
Feng Ni 已提交
593
                    seq_name=seq,
594
                    scaled=scaled,
G
George Ni 已提交
595
                    det_file=os.path.join(det_results_dir,
596 597
                                          '{}.txt'.format(seq)),
                    draw_threshold=draw_threshold)
G
George Ni 已提交
598 599
            else:
                raise ValueError(model_type)
G
George Ni 已提交
600 601

        if save_videos:
G
George Ni 已提交
602 603
            output_video_path = os.path.join(save_dir, '..',
                                             '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
604
            cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
605 606 607
                save_dir, output_video_path)
            os.system(cmd_str)
            logger.info('Save video in {}'.format(output_video_path))
F
Feng Ni 已提交
608 609 610

        write_mot_results(result_filename, results, data_type,
                          self.cfg.num_classes)
611

F
Feng Ni 已提交
612

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
def get_trick_hyperparams(video_name, ori_buffer, ori_thresh):
    if video_name[:3] != 'MOT':
        # only used for MOTChallenge (MOT17, MOT20) Test-set
        return ori_buffer, ori_thresh

    video_name = video_name[:8]
    if 'MOT17-05' in video_name:
        track_buffer = 14
    elif 'MOT17-13' in video_name:
        track_buffer = 25
    else:
        track_buffer = ori_buffer

    if 'MOT17-01' in video_name:
        track_thresh = 0.65
    elif 'MOT17-06' in video_name:
        track_thresh = 0.65
    elif 'MOT17-12' in video_name:
        track_thresh = 0.7
    elif 'MOT17-14' in video_name:
        track_thresh = 0.67
    else:
        track_thresh = ori_thresh

    if 'MOT20-06' in video_name or 'MOT20-08' in video_name:
        track_thresh = 0.3
    else:
        track_thresh = ori_thresh
F
Feng Ni 已提交
641

642
    return track_buffer, ori_thresh