tracker.py 21.8 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import cv2
import glob
F
Feng Ni 已提交
22
import re
G
George Ni 已提交
23 24
import paddle
import numpy as np
F
Feng Ni 已提交
25
import os.path as osp
26
from collections import defaultdict
G
George Ni 已提交
27 28 29

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
G
George Ni 已提交
30
from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
31
from ppdet.modeling.mot.utils import MOTTimer, load_det_results, write_mot_results, save_vis_results
G
George Ni 已提交
32

G
George Ni 已提交
33
from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric
34
from ppdet.metrics import MCMOTMetric
G
George Ni 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
import ppdet.utils.stats as stats

from .callbacks import Callback, ComposeCallback

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['Tracker']


class Tracker(object):
    def __init__(self, cfg, mode='eval'):
        self.cfg = cfg
        assert mode.lower() in ['test', 'eval'], \
                "mode should be 'test' or 'eval'"
        self.mode = mode.lower()
        self.optimizer = None

        # build MOT data loader
        self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]

        # build model
        self.model = create(cfg.architecture)

        self.status = {}
        self.start_epoch = 0

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        self._callbacks = []
        self._compose_callback = None

    def _init_metrics(self):
        if self.mode in ['test']:
            self._metrics = []
            return

        if self.cfg.metric == 'MOT':
            self._metrics = [MOTMetric(), ]
80 81
        elif self.cfg.metric == 'MCMOT':
            self._metrics = [MCMOTMetric(self.cfg.num_classes), ]
G
George Ni 已提交
82 83
        elif self.cfg.metric == 'KITTI':
            self._metrics = [KITTIMOTMetric(), ]
G
George Ni 已提交
84
        else:
85
            logger.warning("Metric not support for metric type {}".format(
G
George Ni 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
                self.cfg.metric))
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights_jde(self, weights):
        load_weight(self.model, weights, self.optimizer)

    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
113 114 115 116
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights, self.optimizer)
G
George Ni 已提交
117 118 119 120 121

    def _eval_seq_jde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
122 123
                      frame_rate=30,
                      draw_threshold=0):
G
George Ni 已提交
124 125 126 127 128
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)

129
        timer = MOTTimer()
G
George Ni 已提交
130 131 132
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
133 134
        results = defaultdict(list)  # support single class and multi classes

G
George Ni 已提交
135 136 137 138 139 140 141
        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))
            # forward
            timer.tic()
142
            pred_dets, pred_embs = self.model(data)
G
George Ni 已提交
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
            pred_dets, pred_embs = pred_dets.numpy(), pred_embs.numpy()
            online_targets_dict = self.model.tracker.update(pred_dets,
                                                            pred_embs)
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
            for cls_id in range(self.cfg.num_classes):
                online_targets = online_targets_dict[cls_id]
                for t in online_targets:
                    tlwh = t.tlwh
                    tid = t.track_id
                    tscore = t.score
                    if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                    if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > tracker.vertical_ratio:
                        continue
                    online_tlwhs[cls_id].append(tlwh)
                    online_ids[cls_id].append(tid)
                    online_scores[cls_id].append(tscore)
                # save results
                results[cls_id].append(
                    (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
                     online_ids[cls_id]))
G
George Ni 已提交
167

168 169 170 171
            timer.toc()
            save_vis_results(data, frame_id, online_ids, online_tlwhs,
                             online_scores, timer.average_time, show_image,
                             save_dir, self.cfg.num_classes)
G
George Ni 已提交
172 173 174 175 176 177 178 179 180
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def _eval_seq_sde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
                      frame_rate=30,
F
Feng Ni 已提交
181
                      seq_name='',
182
                      scaled=False,
183 184
                      det_file='',
                      draw_threshold=0):
G
George Ni 已提交
185 186 187 188
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        use_detector = False if not self.model.detector else True

189
        timer = MOTTimer()
F
Feng Ni 已提交
190
        results = defaultdict(list)
G
George Ni 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
        self.model.reid.eval()
        if not use_detector:
            dets_list = load_det_results(det_file, len(dataloader))
            logger.info('Finish loading detection results file {}.'.format(
                det_file))

        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))

F
Feng Ni 已提交
206 207 208 209
            ori_image = data['ori_image']  # [bs, H, W, 3]
            ori_image_shape = data['ori_image'].shape[1:3]
            # ori_image_shape: [H, W]

G
George Ni 已提交
210
            input_shape = data['image'].shape[2:]
F
Feng Ni 已提交
211 212 213 214 215 216 217 218 219
            # input_shape: [h, w], before data transforms, set in model config

            im_shape = data['im_shape'][0].numpy()
            # im_shape: [new_h, new_w], after data transforms
            scale_factor = data['scale_factor'][0].numpy()

            empty_detections = False
            # when it has no detected bboxes, will not inference reid model 
            # and if visualize, use original image instead
220 221

            # forward
G
George Ni 已提交
222 223 224
            timer.tic()
            if not use_detector:
                dets = dets_list[frame_id]
F
Feng Ni 已提交
225
                bbox_tlwh = np.array(dets['bbox'], dtype='float32')
G
George Ni 已提交
226
                if bbox_tlwh.shape[0] > 0:
227
                    # detector outputs: pred_cls_ids, pred_scores, pred_bboxes
F
Feng Ni 已提交
228 229 230
                    pred_cls_ids = np.array(dets['cls_id'], dtype='float32')
                    pred_scores = np.array(dets['score'], dtype='float32')
                    pred_bboxes = np.concatenate(
G
George Ni 已提交
231 232 233 234
                        (bbox_tlwh[:, 0:2],
                         bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
                        axis=1)
                else:
235 236 237
                    logger.warning(
                        'Frame {} has not object, try to modify score threshold.'.
                        format(frame_id))
F
Feng Ni 已提交
238
                    empty_detections = True
G
George Ni 已提交
239 240
            else:
                outs = self.model.detector(data)
F
Feng Ni 已提交
241 242 243 244
                outs['bbox'] = outs['bbox'].numpy()
                outs['bbox_num'] = outs['bbox_num'].numpy()

                if outs['bbox_num'] > 0 and empty_detections == False:
245 246 247
                    # detector outputs: pred_cls_ids, pred_scores, pred_bboxes
                    pred_cls_ids = outs['bbox'][:, 0:1]
                    pred_scores = outs['bbox'][:, 1:2]
248
                    if not scaled:
F
Feng Ni 已提交
249 250 251 252
                        # Note: scaled=False only in JDE YOLOv3 or other detectors
                        # with LetterBoxResize and JDEBBoxPostProcess.
                        #
                        # 'scaled' means whether the coords after detector outputs
253 254
                        # have been scaled back to the original image, set True 
                        # in general detector, set False in JDE YOLOv3.
255 256 257 258 259
                        pred_bboxes = scale_coords(outs['bbox'][:, 2:],
                                                   input_shape, im_shape,
                                                   scale_factor)
                    else:
                        pred_bboxes = outs['bbox'][:, 2:]
G
George Ni 已提交
260
                else:
261
                    logger.warning(
F
Feng Ni 已提交
262
                        'Frame {} has not detected object, try to modify score threshold.'.
263
                        format(frame_id))
F
Feng Ni 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
                    empty_detections = True

            if not empty_detections:
                pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape)
                if len(keep_idx[0]) == 0:
                    logger.warning(
                        'Frame {} has not detected object left after clip_box.'.
                        format(frame_id))
                    empty_detections = True

            if empty_detections:
                timer.toc()
                # if visualize, use original image instead
                online_ids, online_tlwhs, online_scores = None, None, None
                save_vis_results(data, frame_id, online_ids, online_tlwhs,
                                 online_scores, timer.average_time, show_image,
                                 save_dir, self.cfg.num_classes)
                frame_id += 1
                # thus will not inference reid model
                continue
G
George Ni 已提交
284

F
Feng Ni 已提交
285
            pred_cls_ids = pred_cls_ids[keep_idx[0]]
286
            pred_scores = pred_scores[keep_idx[0]]
F
Feng Ni 已提交
287
            pred_tlwhs = np.concatenate(
288 289 290
                (pred_xyxys[:, 0:2],
                 pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
                axis=1)
F
Feng Ni 已提交
291
            pred_dets = np.concatenate(
292
                (pred_cls_ids, pred_scores, pred_tlwhs), axis=1)
293 294 295 296 297 298 299

            tracker = self.model.tracker
            crops = get_crops(
                pred_xyxys,
                ori_image,
                w=tracker.input_size[0],
                h=tracker.input_size[1])
G
George Ni 已提交
300 301 302
            crops = paddle.to_tensor(crops)

            data.update({'crops': crops})
F
Feng Ni 已提交
303
            pred_embs = self.model(data).numpy()
304 305 306 307 308 309 310

            tracker.predict()
            online_targets = tracker.update(pred_dets, pred_embs)

            online_tlwhs, online_scores, online_ids = [], [], []
            for t in online_targets:
                if not t.is_confirmed() or t.time_since_update > 1:
G
George Ni 已提交
311
                    continue
312 313 314 315 316 317 318 319 320 321 322
                tlwh = t.to_tlwh()
                tscore = t.score
                tid = t.track_id
                if tscore < draw_threshold: continue
                if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > tracker.vertical_ratio:
                    continue
                online_tlwhs.append(tlwh)
                online_scores.append(tscore)
                online_ids.append(tid)
G
George Ni 已提交
323 324 325
            timer.toc()

            # save results
F
Feng Ni 已提交
326
            results[0].append(
G
George Ni 已提交
327
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
328 329 330
            save_vis_results(data, frame_id, online_ids, online_tlwhs,
                             online_scores, timer.average_time, show_image,
                             save_dir, self.cfg.num_classes)
G
George Ni 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def mot_evaluate(self,
                     data_root,
                     seqs,
                     output_dir,
                     data_type='mot',
                     model_type='JDE',
                     save_images=False,
                     save_videos=False,
                     show_image=False,
344
                     scaled=False,
G
George Ni 已提交
345 346 347 348
                     det_results_dir=''):
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
349 350
        assert data_type in ['mot', 'mcmot', 'kitti'], \
            "data_type should be 'mot', 'mcmot' or 'kitti'"
G
George Ni 已提交
351 352 353 354 355 356 357
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

        # run tracking
        n_frame = 0
        timer_avgs, timer_calls = [], []
        for seq in seqs:
358 359 360 361
            infer_dir = os.path.join(data_root, seq)
            if not os.path.exists(infer_dir) or not os.path.isdir(infer_dir):
                logger.warning("Seq {} error, {} has no images.".format(
                    seq, infer_dir))
G
George Ni 已提交
362
                continue
363 364 365 366
            if os.path.exists(os.path.join(infer_dir, 'img1')):
                infer_dir = os.path.join(infer_dir, 'img1')

            frame_rate = 30
G
George Ni 已提交
367
            seqinfo = os.path.join(data_root, seq, 'seqinfo.ini')
368 369 370 371
            if os.path.exists(seqinfo):
                meta_info = open(seqinfo).read()
                frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
                                           meta_info.find('\nseqLength')])
G
George Ni 已提交
372

G
George Ni 已提交
373 374 375 376
            save_dir = os.path.join(output_dir, 'mot_outputs',
                                    seq) if save_images or save_videos else None
            logger.info('start seq: {}'.format(seq))

377
            self.dataset.set_images(self.get_infer_images(infer_dir))
G
George Ni 已提交
378 379 380
            dataloader = create('EvalMOTReader')(self.dataset, 0)

            result_filename = os.path.join(result_root, '{}.txt'.format(seq))
381

G
George Ni 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394
            with paddle.no_grad():
                if model_type in ['JDE', 'FairMOT']:
                    results, nf, ta, tc = self._eval_seq_jde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate)
                elif model_type in ['DeepSORT']:
                    results, nf, ta, tc = self._eval_seq_sde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate,
F
Feng Ni 已提交
395
                        seq_name=seq,
396
                        scaled=scaled,
G
George Ni 已提交
397 398 399 400
                        det_file=os.path.join(det_results_dir,
                                              '{}.txt'.format(seq)))
                else:
                    raise ValueError(model_type)
G
George Ni 已提交
401

402 403
            write_mot_results(result_filename, results, data_type,
                              self.cfg.num_classes)
G
George Ni 已提交
404 405 406 407 408
            n_frame += nf
            timer_avgs.append(ta)
            timer_calls.append(tc)

            if save_videos:
G
George Ni 已提交
409 410
                output_video_path = os.path.join(save_dir, '..',
                                                 '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
411
                cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
                    save_dir, output_video_path)
                os.system(cmd_str)
                logger.info('Save video in {}.'.format(output_video_path))

            logger.info('Evaluate seq: {}'.format(seq))
            # update metrics
            for metric in self._metrics:
                metric.update(data_root, seq, data_type, result_root,
                              result_filename)

        timer_avgs = np.asarray(timer_avgs)
        timer_calls = np.asarray(timer_calls)
        all_time = np.dot(timer_avgs, timer_calls)
        avg_time = all_time / np.sum(timer_calls)
        logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
            all_time, 1.0 / avg_time))

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def get_infer_images(self, infer_dir):
        assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
        images = set()
        assert os.path.isdir(infer_dir), \
            "infer_dir {} is not a directory".format(infer_dir)
        exts = ['jpg', 'jpeg', 'png', 'bmp']
        exts += [ext.upper() for ext in exts]
        for ext in exts:
            images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
        images = list(images)
        images.sort()
        assert len(images) > 0, "no image found in {}".format(infer_dir)
        logger.info("Found {} inference images in total.".format(len(images)))
        return images

F
Feng Ni 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464
    def mot_predict_seq(self,
                        video_file,
                        frame_rate,
                        image_dir,
                        output_dir,
                        data_type='mot',
                        model_type='JDE',
                        save_images=False,
                        save_videos=True,
                        show_image=False,
                        scaled=False,
                        det_results_dir='',
                        draw_threshold=0.5):
G
George Ni 已提交
465 466 467 468 469 470 471
        assert video_file is not None or image_dir is not None, \
            "--video_file or --image_dir should be set."
        assert video_file is None or os.path.isfile(video_file), \
                "{} is not a file".format(video_file)
        assert image_dir is None or os.path.isdir(image_dir), \
                "{} is not a directory".format(image_dir)

G
George Ni 已提交
472 473 474
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
475 476
        assert data_type in ['mot', 'mcmot', 'kitti'], \
            "data_type should be 'mot', 'mcmot' or 'kitti'"
G
George Ni 已提交
477 478 479
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

G
George Ni 已提交
480 481 482
        # run tracking        
        if video_file:
            seq = video_file.split('/')[-1].split('.')[0]
483
            self.dataset.set_video(video_file, frame_rate)
G
George Ni 已提交
484 485 486
            logger.info('Starting tracking video {}'.format(video_file))
        elif image_dir:
            seq = image_dir.split('/')[-1].split('.')[0]
F
Feng Ni 已提交
487 488
            if os.path.exists(os.path.join(image_dir, 'img1')):
                image_dir = os.path.join(image_dir, 'img1')
G
George Ni 已提交
489 490 491 492 493 494 495 496 497 498
            images = [
                '{}/{}'.format(image_dir, x) for x in os.listdir(image_dir)
            ]
            images.sort()
            self.dataset.set_images(images)
            logger.info('Starting tracking folder {}, found {} images'.format(
                image_dir, len(images)))
        else:
            raise ValueError('--video_file or --image_dir should be set.')

G
George Ni 已提交
499 500 501 502 503
        save_dir = os.path.join(output_dir, 'mot_outputs',
                                seq) if save_images or save_videos else None

        dataloader = create('TestMOTReader')(self.dataset, 0)
        result_filename = os.path.join(result_root, '{}.txt'.format(seq))
504 505
        if frame_rate == -1:
            frame_rate = self.dataset.frame_rate
G
George Ni 已提交
506

G
George Ni 已提交
507 508 509 510 511 512
        with paddle.no_grad():
            if model_type in ['JDE', 'FairMOT']:
                results, nf, ta, tc = self._eval_seq_jde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
513 514
                    frame_rate=frame_rate,
                    draw_threshold=draw_threshold)
G
George Ni 已提交
515 516 517 518 519 520
            elif model_type in ['DeepSORT']:
                results, nf, ta, tc = self._eval_seq_sde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
                    frame_rate=frame_rate,
F
Feng Ni 已提交
521
                    seq_name=seq,
522
                    scaled=scaled,
G
George Ni 已提交
523
                    det_file=os.path.join(det_results_dir,
524 525
                                          '{}.txt'.format(seq)),
                    draw_threshold=draw_threshold)
G
George Ni 已提交
526 527
            else:
                raise ValueError(model_type)
G
George Ni 已提交
528 529

        if save_videos:
G
George Ni 已提交
530 531
            output_video_path = os.path.join(save_dir, '..',
                                             '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
532
            cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
533 534 535
                save_dir, output_video_path)
            os.system(cmd_str)
            logger.info('Save video in {}'.format(output_video_path))
F
Feng Ni 已提交
536 537 538

        write_mot_results(result_filename, results, data_type,
                          self.cfg.num_classes)