tracker.py 15.7 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import cv2
import glob
import paddle
import numpy as np

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight

from ppdet.modeling.mot.utils import Timer, load_det_results
from ppdet.modeling.mot import visualization as mot_vis

from ppdet.metrics import Metric, MOTMetric
import ppdet.utils.stats as stats

from .callbacks import Callback, ComposeCallback
from .export_utils import _dump_infer_config

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['Tracker']


class Tracker(object):
    def __init__(self, cfg, mode='eval'):
        self.cfg = cfg
        assert mode.lower() in ['test', 'eval'], \
                "mode should be 'test' or 'eval'"
        self.mode = mode.lower()
        self.optimizer = None

        # build MOT data loader
        self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]

        # build model
        self.model = create(cfg.architecture)

        self.status = {}
        self.start_epoch = 0

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        self._callbacks = []
        self._compose_callback = None

    def _init_metrics(self):
        if self.mode in ['test']:
            self._metrics = []
            return

        if self.cfg.metric == 'MOT':
            self._metrics = [MOTMetric(), ]
        else:
            logger.warn("Metric not support for metric type {}".format(
                self.cfg.metric))
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights_jde(self, weights):
        load_weight(self.model, weights, self.optimizer)

    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights, self.optimizer)
        load_weight(self.model.reid, reid_weights, self.optimizer)

    def _eval_seq_jde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
                      frame_rate=30):
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)

        timer = Timer()
        results = []
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))

            # forward
            timer.tic()
            online_targets = self.model(data)

            online_tlwhs, online_ids = [], []
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
                vertical = tlwh[2] / tlwh[3] > 1.6
                if tlwh[2] * tlwh[3] > tracker.min_box_area and not vertical:
                    online_tlwhs.append(tlwh)
                    online_ids.append(tid)
            timer.toc()

            # save results
            results.append((frame_id + 1, online_tlwhs, online_ids))
            self.save_results(data, frame_id, online_ids, online_tlwhs,
                              timer.average_time, show_image, save_dir)
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def _eval_seq_sde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
                      frame_rate=30,
                      det_file=''):
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        use_detector = False if not self.model.detector else True

        timer = Timer()
        results = []
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
        self.model.reid.eval()
        if not use_detector:
            dets_list = load_det_results(det_file, len(dataloader))
            logger.info('Finish loading detection results file {}.'.format(
                det_file))

        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))

            timer.tic()
            if not use_detector:
                timer.tic()
                dets = dets_list[frame_id]
                bbox_tlwh = paddle.to_tensor(dets['bbox'], dtype='float32')
                pred_scores = paddle.to_tensor(dets['score'], dtype='float32')
                if bbox_tlwh.shape[0] > 0:
                    pred_bboxes = paddle.concat(
                        (bbox_tlwh[:, 0:2],
                         bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
                        axis=1)
                else:
                    pred_bboxes = []
                    pred_scores = []
                data.update({
                    'pred_bboxes': pred_bboxes,
                    'pred_scores': pred_scores
                })

            # forward
            timer.tic()
            online_targets = self.model(data)

            online_tlwhs = []
            online_ids = []
            for track in online_targets:
                if not track.is_confirmed() or track.time_since_update > 1:
                    continue
                tlwh = track.to_tlwh()
                track_id = track.track_id
                online_tlwhs.append(tlwh)
                online_ids.append(track_id)
            timer.toc()

            # save results
            results.append((frame_id + 1, online_tlwhs, online_ids))
            self.save_results(data, frame_id, online_ids, online_tlwhs,
                              timer.average_time, show_image, save_dir)
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def mot_evaluate(self,
                     data_root,
                     seqs,
                     output_dir,
                     data_type='mot',
                     model_type='JDE',
                     save_images=False,
                     save_videos=False,
                     show_image=False,
                     det_results_dir=''):
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
        assert data_type in ['mot', 'kitti'], \
            "data_type should be 'mot' or 'kitti'"
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

        # run tracking
        n_frame = 0
        timer_avgs, timer_calls = [], []
        for seq in seqs:
            save_dir = os.path.join(output_dir, 'mot_outputs',
                                    seq) if save_images or save_videos else None
            logger.info('start seq: {}'.format(seq))

            infer_dir = os.path.join(data_root, seq, 'img1')
            images = self.get_infer_images(infer_dir)
            self.dataset.set_images(images)

            dataloader = create('EvalMOTReader')(self.dataset, 0)

            result_filename = os.path.join(result_root, '{}.txt'.format(seq))
            meta_info = open(os.path.join(data_root, seq, 'seqinfo.ini')).read()
            frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
                                       meta_info.find('\nseqLength')])

            if model_type in ['JDE', 'FairMOT']:
                results, nf, ta, tc = self._eval_seq_jde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
                    frame_rate=frame_rate)
            elif model_type in ['DeepSORT']:
                results, nf, ta, tc = self._eval_seq_sde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
                    frame_rate=frame_rate,
                    det_file=os.path.join(det_results_dir,
                                          '{}.txt'.format(seq)))
            else:
                raise ValueError(model_type)

            self.write_mot_results(result_filename, results, data_type)
            n_frame += nf
            timer_avgs.append(ta)
            timer_calls.append(tc)

            if save_videos:
                output_video_path = os.path.join(save_dir, '{}.mp4'.format(seq))
                cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -c:v copy {}'.format(
                    save_dir, output_video_path)
                os.system(cmd_str)
                logger.info('Save video in {}.'.format(output_video_path))

            logger.info('Evaluate seq: {}'.format(seq))
            # update metrics
            for metric in self._metrics:
                metric.update(data_root, seq, data_type, result_root,
                              result_filename)

        timer_avgs = np.asarray(timer_avgs)
        timer_calls = np.asarray(timer_calls)
        all_time = np.dot(timer_avgs, timer_calls)
        avg_time = all_time / np.sum(timer_calls)
        logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
            all_time, 1.0 / avg_time))

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def get_infer_images(self, infer_dir):
        assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
        images = set()
        assert os.path.isdir(infer_dir), \
            "infer_dir {} is not a directory".format(infer_dir)
        exts = ['jpg', 'jpeg', 'png', 'bmp']
        exts += [ext.upper() for ext in exts]
        for ext in exts:
            images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
        images = list(images)
        images.sort()
        assert len(images) > 0, "no image found in {}".format(infer_dir)
        logger.info("Found {} inference images in total.".format(len(images)))
        return images

    def mot_predict(self,
                    video_file,
                    output_dir,
                    data_type='mot',
                    model_type='JDE',
                    save_images=False,
                    save_videos=True,
                    show_image=False,
                    det_results_dir=''):
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
        assert data_type in ['mot', 'kitti'], \
            "data_type should be 'mot' or 'kitti'"
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

        # run tracking
        seq = video_file.split('/')[-1].split('.')[0]
        save_dir = os.path.join(output_dir, 'mot_outputs',
                                seq) if save_images or save_videos else None
        logger.info('Starting tracking {}'.format(video_file))

        self.dataset.set_video(video_file)
        dataloader = create('TestMOTReader')(self.dataset, 0)
        result_filename = os.path.join(result_root, '{}.txt'.format(seq))
        frame_rate = self.dataset.frame_rate

        if model_type in ['JDE', 'FairMOT']:
            results, nf, ta, tc = self._eval_seq_jde(
                dataloader,
                save_dir=save_dir,
                show_image=show_image,
                frame_rate=frame_rate)
        elif model_type in ['DeepSORT']:
            results, nf, ta, tc = self._eval_seq_sde(
                dataloader,
                save_dir=save_dir,
                show_image=show_image,
                frame_rate=frame_rate,
                det_file=os.path.join(det_results_dir, '{}.txt'.format(seq)))
        else:
            raise ValueError(model_type)

        if save_videos:
            output_video_path = os.path.join(save_dir, '{}.mp4'.format(seq))
            cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -c:v copy {}'.format(
                save_dir, output_video_path)
            os.system(cmd_str)
            logger.info('Save video in {}'.format(output_video_path))

    def write_mot_results(self, filename, results, data_type='mot'):
        if data_type in ['mot', 'mcmot', 'lab']:
            save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n'
        elif data_type == 'kitti':
            save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
        else:
            raise ValueError(data_type)

        with open(filename, 'w') as f:
            for frame_id, tlwhs, track_ids in results:
                if data_type == 'kitti':
                    frame_id -= 1
                for tlwh, track_id in zip(tlwhs, track_ids):
                    if track_id < 0:
                        continue
                    x1, y1, w, h = tlwh
                    x2, y2 = x1 + w, y1 + h
                    line = save_format.format(
                        frame=frame_id,
                        id=track_id,
                        x1=x1,
                        y1=y1,
                        x2=x2,
                        y2=y2,
                        w=w,
                        h=h)
                    f.write(line)
        logger.info('MOT results save in {}'.format(filename))

    def save_results(self, data, frame_id, online_ids, online_tlwhs,
                     average_time, show_image, save_dir):
        if show_image or save_dir is not None:
            assert 'ori_image' in data
            img0 = data['ori_image'].numpy()[0]
            online_im = mot_vis.plot_tracking(
                img0,
                online_tlwhs,
                online_ids,
                frame_id=frame_id,
                fps=1. / average_time)
        if show_image:
            cv2.imshow('online_im', online_im)
        if save_dir is not None:
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)),
                online_im)