tracker.py 24.8 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import cv2
import glob
F
Feng Ni 已提交
22
import re
G
George Ni 已提交
23 24
import paddle
import numpy as np
F
Feng Ni 已提交
25
import os.path as osp
26
from collections import defaultdict
G
George Ni 已提交
27 28 29

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
G
George Ni 已提交
30
from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
31
from ppdet.modeling.mot.utils import MOTTimer, load_det_results, write_mot_results, save_vis_results
32
from ppdet.modeling.mot.tracker import JDETracker, DeepSORTTracker
G
George Ni 已提交
33

G
George Ni 已提交
34
from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric
35
from ppdet.metrics import MCMOTMetric
G
George Ni 已提交
36 37 38 39 40 41 42
import ppdet.utils.stats as stats

from .callbacks import Callback, ComposeCallback

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

43 44 45 46 47
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
MOT_ARCH_JDE = ['JDE', 'FairMOT']
MOT_ARCH_SDE = ['DeepSORT', 'ByteTrack']
MOT_DATA_TYPE = ['mot', 'mcmot', 'kitti']

G
George Ni 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
__all__ = ['Tracker']


class Tracker(object):
    def __init__(self, cfg, mode='eval'):
        self.cfg = cfg
        assert mode.lower() in ['test', 'eval'], \
                "mode should be 'test' or 'eval'"
        self.mode = mode.lower()
        self.optimizer = None

        # build MOT data loader
        self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]

        # build model
        self.model = create(cfg.architecture)

        self.status = {}
        self.start_epoch = 0

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        self._callbacks = []
        self._compose_callback = None

    def _init_metrics(self):
        if self.mode in ['test']:
            self._metrics = []
            return

        if self.cfg.metric == 'MOT':
            self._metrics = [MOTMetric(), ]
86 87
        elif self.cfg.metric == 'MCMOT':
            self._metrics = [MCMOTMetric(self.cfg.num_classes), ]
G
George Ni 已提交
88 89
        elif self.cfg.metric == 'KITTI':
            self._metrics = [KITTIMOTMetric(), ]
G
George Ni 已提交
90
        else:
91
            logger.warning("Metric not support for metric type {}".format(
G
George Ni 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
                self.cfg.metric))
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights_jde(self, weights):
        load_weight(self.model, weights, self.optimizer)

    def load_weights_sde(self, det_weights, reid_weights):
118 119 120 121 122 123 124
        with_detector = self.model.detector is not None
        with_reid = self.model.reid is not None

        if with_detector:
            load_weight(self.model.detector, det_weights, self.optimizer)
            if with_reid:
                load_weight(self.model.reid, reid_weights)
125
        else:
126
            load_weight(self.model.reid, reid_weights)
G
George Ni 已提交
127 128 129 130 131

    def _eval_seq_jde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
132 133
                      frame_rate=30,
                      draw_threshold=0):
G
George Ni 已提交
134 135 136 137 138
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)

139
        timer = MOTTimer()
G
George Ni 已提交
140 141 142
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
143 144
        results = defaultdict(list)  # support single class and multi classes

G
George Ni 已提交
145 146 147 148 149 150 151
        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))
            # forward
            timer.tic()
152
            pred_dets, pred_embs = self.model(data)
G
George Ni 已提交
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
            pred_dets, pred_embs = pred_dets.numpy(), pred_embs.numpy()
            online_targets_dict = self.model.tracker.update(pred_dets,
                                                            pred_embs)
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
            for cls_id in range(self.cfg.num_classes):
                online_targets = online_targets_dict[cls_id]
                for t in online_targets:
                    tlwh = t.tlwh
                    tid = t.track_id
                    tscore = t.score
                    if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                    if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > tracker.vertical_ratio:
                        continue
                    online_tlwhs[cls_id].append(tlwh)
                    online_ids[cls_id].append(tid)
                    online_scores[cls_id].append(tscore)
                # save results
                results[cls_id].append(
                    (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
                     online_ids[cls_id]))
G
George Ni 已提交
177

178 179 180 181
            timer.toc()
            save_vis_results(data, frame_id, online_ids, online_tlwhs,
                             online_scores, timer.average_time, show_image,
                             save_dir, self.cfg.num_classes)
G
George Ni 已提交
182 183 184 185 186 187 188 189 190
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def _eval_seq_sde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
                      frame_rate=30,
F
Feng Ni 已提交
191
                      seq_name='',
192
                      scaled=False,
193 194
                      det_file='',
                      draw_threshold=0):
G
George Ni 已提交
195 196 197
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        use_detector = False if not self.model.detector else True
198
        use_reid = False if not self.model.reid else True
G
George Ni 已提交
199

200
        timer = MOTTimer()
F
Feng Ni 已提交
201
        results = defaultdict(list)
G
George Ni 已提交
202 203 204
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
205 206
        if use_reid:
            self.model.reid.eval()
G
George Ni 已提交
207 208 209 210 211
        if not use_detector:
            dets_list = load_det_results(det_file, len(dataloader))
            logger.info('Finish loading detection results file {}.'.format(
                det_file))

212
        tracker = self.model.tracker
G
George Ni 已提交
213 214 215 216 217 218
        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))

F
Feng Ni 已提交
219 220 221 222
            ori_image = data['ori_image']  # [bs, H, W, 3]
            ori_image_shape = data['ori_image'].shape[1:3]
            # ori_image_shape: [H, W]

G
George Ni 已提交
223
            input_shape = data['image'].shape[2:]
F
Feng Ni 已提交
224 225 226 227 228 229 230 231 232
            # input_shape: [h, w], before data transforms, set in model config

            im_shape = data['im_shape'][0].numpy()
            # im_shape: [new_h, new_w], after data transforms
            scale_factor = data['scale_factor'][0].numpy()

            empty_detections = False
            # when it has no detected bboxes, will not inference reid model 
            # and if visualize, use original image instead
233 234

            # forward
G
George Ni 已提交
235 236 237
            timer.tic()
            if not use_detector:
                dets = dets_list[frame_id]
F
Feng Ni 已提交
238
                bbox_tlwh = np.array(dets['bbox'], dtype='float32')
G
George Ni 已提交
239
                if bbox_tlwh.shape[0] > 0:
240
                    # detector outputs: pred_cls_ids, pred_scores, pred_bboxes
F
Feng Ni 已提交
241 242 243
                    pred_cls_ids = np.array(dets['cls_id'], dtype='float32')
                    pred_scores = np.array(dets['score'], dtype='float32')
                    pred_bboxes = np.concatenate(
G
George Ni 已提交
244 245 246 247
                        (bbox_tlwh[:, 0:2],
                         bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
                        axis=1)
                else:
248 249 250
                    logger.warning(
                        'Frame {} has not object, try to modify score threshold.'.
                        format(frame_id))
F
Feng Ni 已提交
251
                    empty_detections = True
G
George Ni 已提交
252 253
            else:
                outs = self.model.detector(data)
F
Feng Ni 已提交
254 255 256
                outs['bbox'] = outs['bbox'].numpy()
                outs['bbox_num'] = outs['bbox_num'].numpy()

257
                if len(outs['bbox']) > 0 and empty_detections == False:
258 259 260
                    # detector outputs: pred_cls_ids, pred_scores, pred_bboxes
                    pred_cls_ids = outs['bbox'][:, 0:1]
                    pred_scores = outs['bbox'][:, 1:2]
261
                    if not scaled:
F
Feng Ni 已提交
262 263 264 265
                        # Note: scaled=False only in JDE YOLOv3 or other detectors
                        # with LetterBoxResize and JDEBBoxPostProcess.
                        #
                        # 'scaled' means whether the coords after detector outputs
266 267
                        # have been scaled back to the original image, set True 
                        # in general detector, set False in JDE YOLOv3.
268 269 270 271 272
                        pred_bboxes = scale_coords(outs['bbox'][:, 2:],
                                                   input_shape, im_shape,
                                                   scale_factor)
                    else:
                        pred_bboxes = outs['bbox'][:, 2:]
273 274
                    pred_dets_old = np.concatenate(
                        (pred_cls_ids, pred_scores, pred_bboxes), axis=1)
G
George Ni 已提交
275
                else:
276
                    logger.warning(
F
Feng Ni 已提交
277
                        'Frame {} has not detected object, try to modify score threshold.'.
278
                        format(frame_id))
F
Feng Ni 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
                    empty_detections = True

            if not empty_detections:
                pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape)
                if len(keep_idx[0]) == 0:
                    logger.warning(
                        'Frame {} has not detected object left after clip_box.'.
                        format(frame_id))
                    empty_detections = True

            if empty_detections:
                timer.toc()
                # if visualize, use original image instead
                online_ids, online_tlwhs, online_scores = None, None, None
                save_vis_results(data, frame_id, online_ids, online_tlwhs,
                                 online_scores, timer.average_time, show_image,
                                 save_dir, self.cfg.num_classes)
                frame_id += 1
                # thus will not inference reid model
                continue
G
George Ni 已提交
299

F
Feng Ni 已提交
300
            pred_cls_ids = pred_cls_ids[keep_idx[0]]
301
            pred_scores = pred_scores[keep_idx[0]]
F
Feng Ni 已提交
302
            pred_dets = np.concatenate(
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
                (pred_cls_ids, pred_scores, pred_xyxys), axis=1)

            if use_reid:
                crops = get_crops(
                    pred_xyxys,
                    ori_image,
                    w=tracker.input_size[0],
                    h=tracker.input_size[1])
                crops = paddle.to_tensor(crops)

                data.update({'crops': crops})
                pred_embs = self.model(data).numpy()
            else:
                pred_embs = None

            if isinstance(tracker, DeepSORTTracker):
                online_tlwhs, online_scores, online_ids = [], [], []
                tracker.predict()
                online_targets = tracker.update(pred_dets, pred_embs)
                for t in online_targets:
                    if not t.is_confirmed() or t.time_since_update > 1:
                        continue
                    tlwh = t.to_tlwh()
                    tscore = t.score
                    tid = t.track_id
                    if tscore < draw_threshold: continue
                    if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                    if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > tracker.vertical_ratio:
                        continue
                    online_tlwhs.append(tlwh)
                    online_scores.append(tscore)
                    online_ids.append(tid)
                timer.toc()

                # save results
                results[0].append(
                    (frame_id + 1, online_tlwhs, online_scores, online_ids))
                save_vis_results(data, frame_id, online_ids, online_tlwhs,
                                online_scores, timer.average_time, show_image,
                                save_dir, self.cfg.num_classes)

            elif isinstance(tracker, JDETracker):
                # trick hyperparams only used for MOTChallenge (MOT17, MOT20) Test-set
                tracker.track_buffer, tracker.conf_thres = get_trick_hyperparams(
                    seq_name, tracker.track_buffer, tracker.conf_thres)

                online_targets_dict = tracker.update(pred_dets_old, pred_embs)
                online_tlwhs = defaultdict(list)
                online_scores = defaultdict(list)
                online_ids = defaultdict(list)
                for cls_id in range(self.cfg.num_classes):
                    online_targets = online_targets_dict[cls_id]
                    for t in online_targets:
                        tlwh = t.tlwh
                        tid = t.track_id
                        tscore = t.score
                        if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                        if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                                3] > tracker.vertical_ratio:
                            continue
                        online_tlwhs[cls_id].append(tlwh)
                        online_ids[cls_id].append(tid)
                        online_scores[cls_id].append(tscore)
                    # save results
                    results[cls_id].append(
                        (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
                        online_ids[cls_id]))
                timer.toc()
                save_vis_results(data, frame_id, online_ids, online_tlwhs,
                                online_scores, timer.average_time, show_image,
                                save_dir, self.cfg.num_classes)
G
George Ni 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388

            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def mot_evaluate(self,
                     data_root,
                     seqs,
                     output_dir,
                     data_type='mot',
                     model_type='JDE',
                     save_images=False,
                     save_videos=False,
                     show_image=False,
389
                     scaled=False,
G
George Ni 已提交
390 391 392 393
                     det_results_dir=''):
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
394
        assert data_type in MOT_DATA_TYPE, \
395
            "data_type should be 'mot', 'mcmot' or 'kitti'"
396 397
        assert model_type in MOT_ARCH, \
            "model_type should be 'JDE', 'DeepSORT', 'FairMOT' or 'ByteTrack'"
G
George Ni 已提交
398 399 400 401 402

        # run tracking
        n_frame = 0
        timer_avgs, timer_calls = [], []
        for seq in seqs:
403 404 405 406
            infer_dir = os.path.join(data_root, seq)
            if not os.path.exists(infer_dir) or not os.path.isdir(infer_dir):
                logger.warning("Seq {} error, {} has no images.".format(
                    seq, infer_dir))
G
George Ni 已提交
407
                continue
408 409 410 411
            if os.path.exists(os.path.join(infer_dir, 'img1')):
                infer_dir = os.path.join(infer_dir, 'img1')

            frame_rate = 30
G
George Ni 已提交
412
            seqinfo = os.path.join(data_root, seq, 'seqinfo.ini')
413 414 415 416
            if os.path.exists(seqinfo):
                meta_info = open(seqinfo).read()
                frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
                                           meta_info.find('\nseqLength')])
G
George Ni 已提交
417

G
George Ni 已提交
418 419 420 421
            save_dir = os.path.join(output_dir, 'mot_outputs',
                                    seq) if save_images or save_videos else None
            logger.info('start seq: {}'.format(seq))

422
            self.dataset.set_images(self.get_infer_images(infer_dir))
G
George Ni 已提交
423 424 425
            dataloader = create('EvalMOTReader')(self.dataset, 0)

            result_filename = os.path.join(result_root, '{}.txt'.format(seq))
426

G
George Ni 已提交
427
            with paddle.no_grad():
428
                if model_type in MOT_ARCH_JDE:
G
George Ni 已提交
429 430 431 432 433
                    results, nf, ta, tc = self._eval_seq_jde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate)
434
                elif model_type in MOT_ARCH_SDE:
G
George Ni 已提交
435 436 437 438 439
                    results, nf, ta, tc = self._eval_seq_sde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate,
F
Feng Ni 已提交
440
                        seq_name=seq,
441
                        scaled=scaled,
G
George Ni 已提交
442 443 444 445
                        det_file=os.path.join(det_results_dir,
                                              '{}.txt'.format(seq)))
                else:
                    raise ValueError(model_type)
G
George Ni 已提交
446

447 448
            write_mot_results(result_filename, results, data_type,
                              self.cfg.num_classes)
G
George Ni 已提交
449 450 451 452 453
            n_frame += nf
            timer_avgs.append(ta)
            timer_calls.append(tc)

            if save_videos:
G
George Ni 已提交
454 455
                output_video_path = os.path.join(save_dir, '..',
                                                 '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
456
                cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
                    save_dir, output_video_path)
                os.system(cmd_str)
                logger.info('Save video in {}.'.format(output_video_path))

            logger.info('Evaluate seq: {}'.format(seq))
            # update metrics
            for metric in self._metrics:
                metric.update(data_root, seq, data_type, result_root,
                              result_filename)

        timer_avgs = np.asarray(timer_avgs)
        timer_calls = np.asarray(timer_calls)
        all_time = np.dot(timer_avgs, timer_calls)
        avg_time = all_time / np.sum(timer_calls)
        logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
            all_time, 1.0 / avg_time))

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def get_infer_images(self, infer_dir):
        assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
        images = set()
        assert os.path.isdir(infer_dir), \
            "infer_dir {} is not a directory".format(infer_dir)
        exts = ['jpg', 'jpeg', 'png', 'bmp']
        exts += [ext.upper() for ext in exts]
        for ext in exts:
            images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
        images = list(images)
        images.sort()
        assert len(images) > 0, "no image found in {}".format(infer_dir)
        logger.info("Found {} inference images in total.".format(len(images)))
        return images

F
Feng Ni 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509
    def mot_predict_seq(self,
                        video_file,
                        frame_rate,
                        image_dir,
                        output_dir,
                        data_type='mot',
                        model_type='JDE',
                        save_images=False,
                        save_videos=True,
                        show_image=False,
                        scaled=False,
                        det_results_dir='',
                        draw_threshold=0.5):
G
George Ni 已提交
510 511 512 513 514 515 516
        assert video_file is not None or image_dir is not None, \
            "--video_file or --image_dir should be set."
        assert video_file is None or os.path.isfile(video_file), \
                "{} is not a file".format(video_file)
        assert image_dir is None or os.path.isdir(image_dir), \
                "{} is not a directory".format(image_dir)

G
George Ni 已提交
517 518 519
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
520
        assert data_type in MOT_DATA_TYPE, \
521
            "data_type should be 'mot', 'mcmot' or 'kitti'"
522 523
        assert model_type in MOT_ARCH, \
            "model_type should be 'JDE', 'DeepSORT', 'FairMOT' or 'ByteTrack'"
G
George Ni 已提交
524

G
George Ni 已提交
525 526 527
        # run tracking        
        if video_file:
            seq = video_file.split('/')[-1].split('.')[0]
528
            self.dataset.set_video(video_file, frame_rate)
G
George Ni 已提交
529 530 531
            logger.info('Starting tracking video {}'.format(video_file))
        elif image_dir:
            seq = image_dir.split('/')[-1].split('.')[0]
F
Feng Ni 已提交
532 533
            if os.path.exists(os.path.join(image_dir, 'img1')):
                image_dir = os.path.join(image_dir, 'img1')
G
George Ni 已提交
534 535 536 537 538 539 540 541 542 543
            images = [
                '{}/{}'.format(image_dir, x) for x in os.listdir(image_dir)
            ]
            images.sort()
            self.dataset.set_images(images)
            logger.info('Starting tracking folder {}, found {} images'.format(
                image_dir, len(images)))
        else:
            raise ValueError('--video_file or --image_dir should be set.')

G
George Ni 已提交
544 545 546 547 548
        save_dir = os.path.join(output_dir, 'mot_outputs',
                                seq) if save_images or save_videos else None

        dataloader = create('TestMOTReader')(self.dataset, 0)
        result_filename = os.path.join(result_root, '{}.txt'.format(seq))
549 550
        if frame_rate == -1:
            frame_rate = self.dataset.frame_rate
G
George Ni 已提交
551

G
George Ni 已提交
552
        with paddle.no_grad():
553
            if model_type in MOT_ARCH_JDE:
G
George Ni 已提交
554 555 556 557
                results, nf, ta, tc = self._eval_seq_jde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
558 559
                    frame_rate=frame_rate,
                    draw_threshold=draw_threshold)
560
            elif model_type in MOT_ARCH_SDE:
G
George Ni 已提交
561 562 563 564 565
                results, nf, ta, tc = self._eval_seq_sde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
                    frame_rate=frame_rate,
F
Feng Ni 已提交
566
                    seq_name=seq,
567
                    scaled=scaled,
G
George Ni 已提交
568
                    det_file=os.path.join(det_results_dir,
569 570
                                          '{}.txt'.format(seq)),
                    draw_threshold=draw_threshold)
G
George Ni 已提交
571 572
            else:
                raise ValueError(model_type)
G
George Ni 已提交
573 574

        if save_videos:
G
George Ni 已提交
575 576
            output_video_path = os.path.join(save_dir, '..',
                                             '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
577
            cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
578 579 580
                save_dir, output_video_path)
            os.system(cmd_str)
            logger.info('Save video in {}'.format(output_video_path))
F
Feng Ni 已提交
581 582 583

        write_mot_results(result_filename, results, data_type,
                          self.cfg.num_classes)
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

def get_trick_hyperparams(video_name, ori_buffer, ori_thresh):
    if video_name[:3] != 'MOT':
        # only used for MOTChallenge (MOT17, MOT20) Test-set
        return ori_buffer, ori_thresh

    video_name = video_name[:8]
    if 'MOT17-05' in video_name:
        track_buffer = 14
    elif 'MOT17-13' in video_name:
        track_buffer = 25
    else:
        track_buffer = ori_buffer

    if 'MOT17-01' in video_name:
        track_thresh = 0.65
    elif 'MOT17-06' in video_name:
        track_thresh = 0.65
    elif 'MOT17-12' in video_name:
        track_thresh = 0.7
    elif 'MOT17-14' in video_name:
        track_thresh = 0.67
    else:
        track_thresh = ori_thresh

    if 'MOT20-06' in video_name or 'MOT20-08' in video_name:
        track_thresh = 0.3
    else:
        track_thresh = ori_thresh
    
    return track_buffer, ori_thresh