keypoint_infer.py 17.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import glob
from functools import reduce

from PIL import Image
import cv2
W
wangguanzhong 已提交
23
import math
24 25 26
import numpy as np
import paddle
from preprocess import preprocess, NormalizeImage, Permute
W
wangguanzhong 已提交
27
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
28 29 30 31
from keypoint_postprocess import HrHRNetPostProcess, HRNetPostProcess
from keypoint_visualize import draw_pose
from paddle.inference import Config
from paddle.inference import create_predictor
32 33
from utils import argsparser, Timer, get_current_memory_mb
from benchmark_utils import PaddleInferBenchmark
34 35 36 37 38 39 40 41 42 43 44 45 46 47
from infer import get_test_images, print_arguments

# Global dictionary
KEYPOINT_SUPPORT_MODELS = {
    'HigherHRNet': 'keypoint_bottomup',
    'HRNet': 'keypoint_topdown'
}


class KeyPoint_Detector(object):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
48
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
49 50 51 52 53 54 55 56 57 58 59
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
60
                 device='CPU',
61 62 63 64 65 66
                 run_mode='fluid',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
Z
zhiboniu 已提交
67 68
                 enable_mkldnn=False,
                 use_dark=True):
69
        self.pred_config = pred_config
70
        self.predictor, self.config = load_predictor(
71 72 73
            model_dir,
            run_mode=run_mode,
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
74
            device=device,
75
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
76 77 78 79 80 81 82 83
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
Z
zhiboniu 已提交
84
        self.use_dark = use_dark
85

W
wangguanzhong 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    def get_person_from_rect(self, image, results, det_threshold=0.5):
        # crop the person result from image
        self.det_times.preprocess_time_s.start()
        det_results = results['boxes']
        mask = det_results[:, 1] > det_threshold
        valid_rects = det_results[mask]
        rect_images = []
        new_rects = []
        #image_buff = []
        org_rects = []
        for rect in valid_rects:
            rect_image, new_rect, org_rect = expand_crop(image, rect)
            if rect_image is None or rect_image.size == 0:
                continue
            #image_buff.append([rect_image, new_rect])
            rect_images.append(rect_image)
            new_rects.append(new_rect)
            org_rects.append(org_rect)
        self.det_times.preprocess_time_s.end()
        return rect_images, new_rects, org_rects

    def preprocess(self, image_list):
108 109 110 111 112
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
W
wangguanzhong 已提交
113 114 115 116 117 118 119 120

        input_im_lst = []
        input_im_info_lst = []
        for im in image_list:
            im, im_info = preprocess(im, preprocess_ops)
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        return inputs

    def postprocess(self, np_boxes, np_masks, inputs, threshold=0.5):
        # postprocess output of predictor
        if KEYPOINT_SUPPORT_MODELS[
                self.pred_config.arch] == 'keypoint_bottomup':
            results = {}
            h, w = inputs['im_shape'][0]
            preds = [np_boxes]
            if np_masks is not None:
                preds += np_masks
            preds += [h, w]
            keypoint_postprocess = HrHRNetPostProcess()
            results['keypoint'] = keypoint_postprocess(*preds)
            return results
        elif KEYPOINT_SUPPORT_MODELS[
                self.pred_config.arch] == 'keypoint_topdown':
            results = {}
            imshape = inputs['im_shape'][:, ::-1]
            center = np.round(imshape / 2.)
            scale = imshape / 200.
Z
zhiboniu 已提交
142
            keypoint_postprocess = HRNetPostProcess(use_dark=self.use_dark)
143 144 145 146 147 148
            results['keypoint'] = keypoint_postprocess(np_boxes, center, scale)
            return results
        else:
            raise ValueError("Unsupported arch: {}, expect {}".format(
                self.pred_config.arch, KEYPOINT_SUPPORT_MODELS))

W
wangguanzhong 已提交
149
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
150 151
        '''
        Args:
W
wangguanzhong 已提交
152
            image_list (list): list of image 
153 154 155 156 157 158 159
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
                            shape: [N, im_h, im_w]
        '''
160
        self.det_times.preprocess_time_s.start()
W
wangguanzhong 已提交
161
        inputs = self.preprocess(image_list)
162 163 164 165 166 167
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()

        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
168
        self.det_times.preprocess_time_s.end()
169 170 171 172 173 174 175 176 177 178 179 180 181 182
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
            if self.pred_config.tagmap:
                masks_tensor = self.predictor.get_output_handle(output_names[1])
                heat_k = self.predictor.get_output_handle(output_names[2])
                inds_k = self.predictor.get_output_handle(output_names[3])
                np_masks = [
                    masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
                    inds_k.copy_to_cpu()
                ]

183
        self.det_times.inference_time_s.start()
184 185 186 187 188 189 190 191 192 193 194 195 196
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
            if self.pred_config.tagmap:
                masks_tensor = self.predictor.get_output_handle(output_names[1])
                heat_k = self.predictor.get_output_handle(output_names[2])
                inds_k = self.predictor.get_output_handle(output_names[3])
                np_masks = [
                    masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
                    inds_k.copy_to_cpu()
                ]
197
        self.det_times.inference_time_s.end(repeats=repeats)
198

199
        self.det_times.postprocess_time_s.start()
200 201
        results = self.postprocess(
            np_boxes, np_masks, inputs, threshold=threshold)
202
        self.det_times.postprocess_time_s.end()
W
wangguanzhong 已提交
203
        self.det_times.img_num += len(image_list)
204 205 206
        return results


W
wangguanzhong 已提交
207
def create_inputs(imgs, im_info):
208 209
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
210 211
        imgs (list(numpy)): list of image (np.ndarray)
        im_info (list(dict)): list of image info
212 213 214 215
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
W
wangguanzhong 已提交
216 217 218 219 220
    inputs['image'] = np.stack(imgs, axis=0)
    im_shape = []
    for e in im_info:
        im_shape.append(np.array((e['im_shape'])).astype('float32'))
    inputs['im_shape'] = np.stack(im_shape, axis=0)
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    return inputs


class PredictConfig_KeyPoint():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.archcls = KEYPOINT_SUPPORT_MODELS[yml_conf['arch']]
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.tagmap = False
242
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        if 'keypoint_bottomup' == self.archcls:
            self.tagmap = True
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in KEYPOINT_SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], KEYPOINT_SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
G
Guanghua Yu 已提交
270
                   device='CPU',
271 272 273 274 275 276 277 278 279 280 281
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
                   trt_opt_shape=640,
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False):
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
282
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
283 284 285 286 287 288 289 290 291 292
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
293
        ValueError: predict by TensorRT need device == 'GPU'.
294
    """
G
Guanghua Yu 已提交
295
    if device != 'GPU' and run_mode != 'fluid':
296
        raise ValueError(
G
Guanghua Yu 已提交
297 298
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
299 300 301
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
302
    if device == 'GPU':
303 304 305 306
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
307 308
    elif device == 'XPU':
        config.enable_xpu(10 * 1024 * 1024)
309 310 311 312 313 314 315 316 317 318 319 320 321 322
    else:
        config.disable_gpu()
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass

G
Guanghua Yu 已提交
323 324 325 326 327
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
            workspace_size=1 << 10,
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
            use_calib_mode=trt_calib_mode)

        if use_dynamic_shape:
            min_input_shape = {'image': [1, 3, trt_min_shape, trt_min_shape]}
            max_input_shape = {'image': [1, 3, trt_max_shape, trt_max_shape]}
            opt_input_shape = {'image': [1, 3, trt_opt_shape, trt_opt_shape]}
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
352
    return predictor, config
353 354 355 356 357


def predict_image(detector, image_list):
    for i, img_file in enumerate(image_list):
        if FLAGS.run_benchmark:
W
wangguanzhong 已提交
358
            detector.predict([img_file], FLAGS.threshold, warmup=10, repeats=10)
359 360 361 362 363 364
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
W
wangguanzhong 已提交
365
            results = detector.predict([img_file], FLAGS.threshold)
Z
zhiboniu 已提交
366 367 368 369 370 371 372
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
            draw_pose(
                img_file,
                results,
                visual_thread=FLAGS.threshold,
                save_dir=FLAGS.output_dir)
373 374 375 376 377 378 379 380


def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
381 382
        video_name = os.path.splitext(os.path.basename(FLAGS.video_file))[
            0] + '.mp4'
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    fps = 30
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name + '.mp4')
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break

        print('detect frame:%d' % (index))
        index += 1
        results = detector.predict(frame, FLAGS.threshold)
        im = draw_pose(
            frame, results, visual_thread=FLAGS.threshold, returnimg=True)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig_KeyPoint(FLAGS.model_dir)
    detector = KeyPoint_Detector(
        pred_config,
        FLAGS.model_dir,
G
Guanghua Yu 已提交
417
        device=FLAGS.device,
418 419 420 421 422 423
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
Z
zhiboniu 已提交
424 425
        enable_mkldnn=FLAGS.enable_mkldnn,
        use_dark=FLAGS.use_dark)
426 427 428 429 430 431 432 433 434 435 436 437

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, img_list)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
438 439
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
440 441
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            data_info = {
                'batch_size': 1,
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
            det_log('KeyPoint')
457 458 459 460 461 462 463


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
464 465 466 467
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
468 469

    main()