Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d7ff713e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d7ff713e
编写于
5月 17, 2021
作者:
Z
zhiboniu
提交者:
GitHub
5月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add pose demo (#3042)
上级
34968d61
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
50 addition
and
30 deletion
+50
-30
configs/keypoint/README.md
configs/keypoint/README.md
+17
-11
configs/keypoint/football_keypoint.gif
configs/keypoint/football_keypoint.gif
+0
-0
demo/hrnet_demo.jpg
demo/hrnet_demo.jpg
+0
-0
deploy/python/keypoint_det_unite_infer.py
deploy/python/keypoint_det_unite_infer.py
+22
-15
deploy/python/keypoint_infer.py
deploy/python/keypoint_infer.py
+7
-1
deploy/python/keypoint_visualize.py
deploy/python/keypoint_visualize.py
+4
-3
未找到文件。
configs/keypoint/README.md
浏览文件 @
d7ff713e
...
...
@@ -6,17 +6,21 @@
-
PaddleDetection KeyPoint部分紧跟业内最新最优算法方案,包含Top-Down、BottomUp两套方案,以满足用户的不同需求。
<div
align=
"center"
>
<img
src=
"./football_keypoint.gif"
width=
'800'
/>
</div>
#### Model Zoo
| 模型 | 输入尺寸 | 通道数 | AP(coco val) | 模型下载 | 配置文件
|
| :---------------- | -------- | ------ | :----------: | :----------------------------------------------------------: | -----------------------------------------------------------
-
|
| HigherHRNet | 512 | 32 | 67.1 |
[
higherhrnet_hrnet_w32_512.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
)
|
| HigherHRNet | 640 | 32 | 68.3 |
[
higherhrnet_hrnet_w32_640.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_640.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_640.yml
)
|
| HigherHRNet+SWAHR | 512 | 32 | 68.9 |
[
higherhrnet_hrnet_w32_512_swahr.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512_swahr.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint
/higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml
)
|
| HRNet | 256x192 | 32 | 76.9 |
[
hrnet_w32_256x192.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/hrnet/hrnet_w32_256x192.yml
)
|
| HRNet | 384x288 | 32 | 77.8 |
[
hrnet_w32_384x288.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/hrnet/hrnet_w32_384x288.yml
)
|
| 模型 | 输入尺寸 | 通道数 | AP(coco val) | 模型下载 | 配置文件 |
| :---------------- | -------- | ------ | :----------: | :----------------------------------------------------------: | ----------------------------------------------------------- |
| HigherHRNet | 512 | 32 | 67.1 |
[
higherhrnet_hrnet_w32_512.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512.pdparams
)
|
[
config
](
./higherhrnet/higherhrnet_hrnet_w32_512.yml
)
|
| HigherHRNet | 640 | 32 | 68.3 |
[
higherhrnet_hrnet_w32_640.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_640.pdparams
)
|
[
config
](
./higherhrnet/higherhrnet_hrnet_w32_640.yml
)
|
| HigherHRNet+SWAHR | 512 | 32 | 68.9 |
[
higherhrnet_hrnet_w32_512_swahr.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512_swahr.pdparams
)
|
[
config
](
.
/higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml
)
|
| HRNet | 256x192 | 32 | 76.9 |
[
hrnet_w32_256x192.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams
)
|
[
config
](
./hrnet/hrnet_w32_256x192.yml
)
|
| HRNet | 384x288 | 32 | 77.8 |
[
hrnet_w32_384x288.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams
)
|
[
config
](
./hrnet/hrnet_w32_384x288.yml
)
|
...
...
@@ -54,6 +58,8 @@ CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/higherhrnet/hig
**模型预测:**
注意:top-down模型只支持单人截图预测,如需使用多人图,请使用[联合部署推理]方式。或者使用bottom-up模型。
```
shell
CUDA_VISIBLE_DEVICES
=
0 python3 tools/infer.py
-c
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
-o
weights
=
./output/higherhrnet_hrnet_w32_512/model_final.pdparams
--infer_dir
=
../images/
--draw_threshold
=
0.5
--save_txt
=
True
```
...
...
@@ -65,10 +71,10 @@ CUDA_VISIBLE_DEVICES=0 python3 tools/infer.py -c configs/keypoint/higherhrnet/hi
python tools/export_model.py
-c
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
-o
weights
=
output/higherhrnet_hrnet_w32_512/model_final.pdparams
#部署推理
#keypoint top-down/bottom-up 单独推理,
图片
python deploy/python/keypoint_infer.py
--model_dir
=
output_inference/higherhrnet_hrnet_w32_512/
--image_file
=
.
./images/xxx.jpe
g
--use_gpu
=
True
--threshold
=
0.5
python deploy/python/keypoint_infer.py
--model_dir
=
output_inference/hrnet_w32_384x288/
--image_file
=
.
./images/xxx.jpe
g
--use_gpu
=
True
--threshold
=
0.5
#keypoint top-down/bottom-up 单独推理,
该模式下top-down模型只支持单人截图预测。
python deploy/python/keypoint_infer.py
--model_dir
=
output_inference/higherhrnet_hrnet_w32_512/
--image_file
=
.
/demo/000000014439_640x640.jp
g
--use_gpu
=
True
--threshold
=
0.5
python deploy/python/keypoint_infer.py
--model_dir
=
output_inference/hrnet_w32_384x288/
--image_file
=
.
/demo/hrnet_demo.jp
g
--use_gpu
=
True
--threshold
=
0.5
#keypoint top-down
+ detector 与检测联合部署推理
#keypoint top-down
模型 + detector 检测联合部署推理(联合推理只支持top-down方式)
python deploy/python/keypoint_det_unite_infer.py
--det_model_dir
=
output_inference/ppyolo_r50vd_dcn_2x_coco/
--keypoint_model_dir
=
output_inference/hrnet_w32_384x288/
--video_file
=
../video/xxx.mp4
```
configs/keypoint/football_keypoint.gif
0 → 100644
浏览文件 @
d7ff713e
因为 它太大了无法显示 image diff 。你可以改为
查看blob
。
demo/hrnet_demo.jpg
0 → 100644
浏览文件 @
d7ff713e
42.1 KB
deploy/python/keypoint_det_unite_infer.py
浏览文件 @
d7ff713e
...
...
@@ -26,19 +26,22 @@ from keypoint_infer import KeyPoint_Detector, PredictConfig_KeyPoint
from
keypoint_visualize
import
draw_pose
def
expand_crop
(
images
,
rect
,
expand_ratio
=
0.
5
):
def
expand_crop
(
images
,
rect
,
expand_ratio
=
0.
3
):
imgh
,
imgw
,
c
=
images
.
shape
label
,
_
,
xmin
,
ymin
,
xmax
,
ymax
=
[
int
(
x
)
for
x
in
rect
.
tolist
()]
label
,
conf
,
xmin
,
ymin
,
xmax
,
ymax
=
[
int
(
x
)
for
x
in
rect
.
tolist
()]
if
label
!=
0
:
return
None
,
None
return
None
,
None
,
None
org_rect
=
[
xmin
,
ymin
,
xmax
,
ymax
]
h_half
=
(
ymax
-
ymin
)
*
(
1
+
expand_ratio
)
/
2.
w_half
=
(
xmax
-
xmin
)
*
(
1
+
expand_ratio
)
/
2.
if
h_half
>
w_half
*
4
/
3
:
w_half
=
h_half
*
0.75
center
=
[(
ymin
+
ymax
)
/
2.
,
(
xmin
+
xmax
)
/
2.
]
ymin
=
max
(
0
,
int
(
center
[
0
]
-
h_half
))
ymax
=
min
(
imgh
-
1
,
int
(
center
[
0
]
+
h_half
))
xmin
=
max
(
0
,
int
(
center
[
1
]
-
w_half
))
xmax
=
min
(
imgw
-
1
,
int
(
center
[
1
]
+
w_half
))
return
images
[
ymin
:
ymax
,
xmin
:
xmax
,
:],
[
xmin
,
ymin
,
xmax
,
ymax
]
return
images
[
ymin
:
ymax
,
xmin
:
xmax
,
:],
[
xmin
,
ymin
,
xmax
,
ymax
]
,
org_rect
def
get_person_from_rect
(
images
,
results
):
...
...
@@ -46,12 +49,14 @@ def get_person_from_rect(images, results):
mask
=
det_results
[:,
1
]
>
FLAGS
.
det_threshold
valid_rects
=
det_results
[
mask
]
image_buff
=
[]
org_rects
=
[]
for
rect
in
valid_rects
:
rect_image
,
new_rect
=
expand_crop
(
images
,
rect
)
rect_image
,
new_rect
,
org_rect
=
expand_crop
(
images
,
rect
)
if
rect_image
is
None
:
continue
image_buff
.
append
([
rect_image
,
new_rect
])
return
image_buff
org_rects
.
append
(
org_rect
)
return
image_buff
,
org_rects
def
affine_backto_orgimages
(
keypoint_result
,
batch_records
):
...
...
@@ -65,10 +70,10 @@ def topdown_unite_predict(detector, topdown_keypoint_detector, image_list):
for
i
,
img_file
in
enumerate
(
image_list
):
image
,
_
=
decode_image
(
img_file
,
{})
results
=
detector
.
predict
(
image
,
FLAGS
.
det_threshold
)
batchs_images
=
get_person_from_rect
(
image
,
results
)
batchs_images
,
det_rects
=
get_person_from_rect
(
image
,
results
)
keypoint_vector
=
[]
score_vector
=
[]
rect_vecotr
=
[]
rect_vecotr
=
det_rects
for
batch_images
,
batch_records
in
batchs_images
:
keypoint_result
=
topdown_keypoint_detector
.
predict
(
batch_images
,
FLAGS
.
keypoint_threshold
)
...
...
@@ -76,14 +81,18 @@ def topdown_unite_predict(detector, topdown_keypoint_detector, image_list):
batch_records
)
keypoint_vector
.
append
(
orgkeypoints
)
score_vector
.
append
(
scores
)
rect_vecotr
.
append
(
batch_records
)
keypoint_res
=
{}
keypoint_res
[
'keypoint'
]
=
[
np
.
vstack
(
keypoint_vector
),
np
.
vstack
(
score_vector
)
]
keypoint_res
[
'bbox'
]
=
rect_vecotr
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
os
.
makedirs
(
FLAGS
.
output_dir
)
draw_pose
(
img_file
,
keypoint_res
,
visual_thread
=
FLAGS
.
keypoint_threshold
)
img_file
,
keypoint_res
,
visual_thread
=
FLAGS
.
keypoint_threshold
,
save_dir
=
FLAGS
.
output_dir
)
def
topdown_unite_predict_video
(
detector
,
topdown_keypoint_detector
,
camera_id
):
...
...
@@ -92,8 +101,8 @@ def topdown_unite_predict_video(detector, topdown_keypoint_detector, camera_id):
video_name
=
'output.mp4'
else
:
capture
=
cv2
.
VideoCapture
(
FLAGS
.
video_file
)
video_name
=
os
.
path
.
basename
(
os
.
path
.
split
(
FLAGS
.
video_file
+
'.mp4'
)[
-
1
])
video_name
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
FLAGS
.
video_file
))[
0
]
+
'.mp4'
fps
=
30
width
=
int
(
capture
.
get
(
cv2
.
CAP_PROP_FRAME_WIDTH
))
height
=
int
(
capture
.
get
(
cv2
.
CAP_PROP_FRAME_HEIGHT
))
...
...
@@ -114,10 +123,9 @@ def topdown_unite_predict_video(detector, topdown_keypoint_detector, camera_id):
frame2
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2RGB
)
results
=
detector
.
predict
(
frame2
,
FLAGS
.
det_threshold
)
batchs_images
=
get_person_from_rect
(
frame
,
results
)
batchs_images
,
rect_vecotr
=
get_person_from_rect
(
frame2
,
results
)
keypoint_vector
=
[]
score_vector
=
[]
rect_vecotr
=
[]
for
batch_images
,
batch_records
in
batchs_images
:
keypoint_result
=
topdown_keypoint_detector
.
predict
(
batch_images
,
FLAGS
.
keypoint_threshold
)
...
...
@@ -125,7 +133,6 @@ def topdown_unite_predict_video(detector, topdown_keypoint_detector, camera_id):
batch_records
)
keypoint_vector
.
append
(
orgkeypoints
)
score_vector
.
append
(
scores
)
rect_vecotr
.
append
(
batch_records
)
keypoint_res
=
{}
keypoint_res
[
'keypoint'
]
=
[
np
.
vstack
(
keypoint_vector
),
np
.
vstack
(
score_vector
)
...
...
deploy/python/keypoint_infer.py
浏览文件 @
d7ff713e
...
...
@@ -332,7 +332,13 @@ def predict_image(detector, image_list):
print
(
'Test iter {}, file name:{}'
.
format
(
i
,
img_file
))
else
:
results
=
detector
.
predict
(
img_file
,
FLAGS
.
threshold
)
draw_pose
(
img_file
,
results
,
visual_thread
=
FLAGS
.
threshold
)
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
os
.
makedirs
(
FLAGS
.
output_dir
)
draw_pose
(
img_file
,
results
,
visual_thread
=
FLAGS
.
threshold
,
save_dir
=
FLAGS
.
output_dir
)
def
predict_video
(
detector
,
camera_id
):
...
...
deploy/python/keypoint_visualize.py
浏览文件 @
d7ff713e
...
...
@@ -28,6 +28,7 @@ def draw_pose(imgfile,
results
,
visual_thread
=
0.6
,
save_name
=
'pose.jpg'
,
save_dir
=
'output'
,
returnimg
=
False
):
try
:
import
matplotlib.pyplot
as
plt
...
...
@@ -56,8 +57,7 @@ def draw_pose(imgfile,
bboxs
=
results
[
'bbox'
]
for
idx
,
rect
in
enumerate
(
bboxs
):
xmin
,
ymin
,
xmax
,
ymax
=
rect
cv2
.
rectangle
(
img
,
(
xmin
,
ymin
),
(
xmax
,
ymax
),
colors
[
idx
%
len
(
colors
)],
2
)
cv2
.
rectangle
(
img
,
(
xmin
,
ymin
),
(
xmax
,
ymax
),
colors
[
0
],
1
)
canvas
=
img
.
copy
()
for
i
in
range
(
17
):
...
...
@@ -100,7 +100,8 @@ def draw_pose(imgfile,
canvas
=
cv2
.
addWeighted
(
canvas
,
0.4
,
cur_canvas
,
0.6
,
0
)
if
returnimg
:
return
canvas
save_name
=
'output/'
+
os
.
path
.
basename
(
imgfile
)[:
-
4
]
+
'_vis.jpg'
save_name
=
os
.
path
.
join
(
save_dir
,
os
.
path
.
splitext
(
os
.
path
.
basename
(
imgfile
))[
0
]
+
'_vis.jpg'
)
plt
.
imsave
(
save_name
,
canvas
[:,
:,
::
-
1
])
print
(
"keypoint visualize image saved to: "
+
save_name
)
plt
.
close
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录