keypoint_infer.py 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import glob
from functools import reduce

from PIL import Image
import cv2
import numpy as np
import paddle
from preprocess import preprocess, NormalizeImage, Permute
from keypoint_preprocess import EvalAffine, TopDownEvalAffine
from keypoint_postprocess import HrHRNetPostProcess, HRNetPostProcess
from keypoint_visualize import draw_pose
from paddle.inference import Config
from paddle.inference import create_predictor
31 32
from utils import argsparser, Timer, get_current_memory_mb
from benchmark_utils import PaddleInferBenchmark
33 34 35 36 37 38 39 40 41 42 43 44 45 46
from infer import get_test_images, print_arguments

# Global dictionary
KEYPOINT_SUPPORT_MODELS = {
    'HigherHRNet': 'keypoint_bottomup',
    'HRNet': 'keypoint_topdown'
}


class KeyPoint_Detector(object):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
47
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
48 49 50 51 52 53 54 55 56 57 58
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
59
                 device='CPU',
60 61 62 63 64 65 66 67
                 run_mode='fluid',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        self.pred_config = pred_config
68
        self.predictor, self.config = load_predictor(
69 70 71
            model_dir,
            run_mode=run_mode,
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
72
            device=device,
73
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0

    def preprocess(self, im):
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
89
        im, im_info = preprocess(im, preprocess_ops)
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        inputs = create_inputs(im, im_info)
        return inputs

    def postprocess(self, np_boxes, np_masks, inputs, threshold=0.5):
        # postprocess output of predictor
        if KEYPOINT_SUPPORT_MODELS[
                self.pred_config.arch] == 'keypoint_bottomup':
            results = {}
            h, w = inputs['im_shape'][0]
            preds = [np_boxes]
            if np_masks is not None:
                preds += np_masks
            preds += [h, w]
            keypoint_postprocess = HrHRNetPostProcess()
            results['keypoint'] = keypoint_postprocess(*preds)
            return results
        elif KEYPOINT_SUPPORT_MODELS[
                self.pred_config.arch] == 'keypoint_topdown':
            results = {}
            imshape = inputs['im_shape'][:, ::-1]
            center = np.round(imshape / 2.)
            scale = imshape / 200.
            keypoint_postprocess = HRNetPostProcess()
            results['keypoint'] = keypoint_postprocess(np_boxes, center, scale)
            return results
        else:
            raise ValueError("Unsupported arch: {}, expect {}".format(
                self.pred_config.arch, KEYPOINT_SUPPORT_MODELS))

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
                            shape: [N, im_h, im_w]
        '''
130
        self.det_times.preprocess_time_s.start()
131 132 133 134 135 136 137
        inputs = self.preprocess(image)
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()

        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
138
        self.det_times.preprocess_time_s.end()
139 140 141 142 143 144 145 146 147 148 149 150 151 152
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
            if self.pred_config.tagmap:
                masks_tensor = self.predictor.get_output_handle(output_names[1])
                heat_k = self.predictor.get_output_handle(output_names[2])
                inds_k = self.predictor.get_output_handle(output_names[3])
                np_masks = [
                    masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
                    inds_k.copy_to_cpu()
                ]

153
        self.det_times.inference_time_s.start()
154 155 156 157 158 159 160 161 162 163 164 165 166
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
            if self.pred_config.tagmap:
                masks_tensor = self.predictor.get_output_handle(output_names[1])
                heat_k = self.predictor.get_output_handle(output_names[2])
                inds_k = self.predictor.get_output_handle(output_names[3])
                np_masks = [
                    masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
                    inds_k.copy_to_cpu()
                ]
167
        self.det_times.inference_time_s.end(repeats=repeats)
168

169
        self.det_times.postprocess_time_s.start()
170 171
        results = self.postprocess(
            np_boxes, np_masks, inputs, threshold=threshold)
172
        self.det_times.postprocess_time_s.end()
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        self.det_times.img_num += 1
        return results


def create_inputs(im, im_info):
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
        model_arch (str): model type
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
    inputs['image'] = np.array((im, )).astype('float32')
    inputs['im_shape'] = np.array((im_info['im_shape'], )).astype('float32')

    return inputs


class PredictConfig_KeyPoint():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.archcls = KEYPOINT_SUPPORT_MODELS[yml_conf['arch']]
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.tagmap = False
211
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        if 'keypoint_bottomup' == self.archcls:
            self.tagmap = True
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in KEYPOINT_SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], KEYPOINT_SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
G
Guanghua Yu 已提交
239
                   device='CPU',
240 241 242 243 244 245 246 247 248 249 250
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
                   trt_opt_shape=640,
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False):
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
251
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
252 253 254 255 256 257 258 259 260 261
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
262
        ValueError: predict by TensorRT need device == 'GPU'.
263
    """
G
Guanghua Yu 已提交
264
    if device != 'GPU' and run_mode != 'fluid':
265
        raise ValueError(
G
Guanghua Yu 已提交
266 267
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
268 269 270
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
271
    if device == 'GPU':
272 273 274 275
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
276 277
    elif device == 'XPU':
        config.enable_xpu(10 * 1024 * 1024)
278 279 280 281 282 283 284 285 286 287 288 289 290 291
    else:
        config.disable_gpu()
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass

G
Guanghua Yu 已提交
292 293 294 295 296
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
            workspace_size=1 << 10,
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
            use_calib_mode=trt_calib_mode)

        if use_dynamic_shape:
            min_input_shape = {'image': [1, 3, trt_min_shape, trt_min_shape]}
            max_input_shape = {'image': [1, 3, trt_max_shape, trt_max_shape]}
            opt_input_shape = {'image': [1, 3, trt_opt_shape, trt_opt_shape]}
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
321
    return predictor, config
322 323 324 325 326 327 328 329 330 331 332 333 334


def predict_image(detector, image_list):
    for i, img_file in enumerate(image_list):
        if FLAGS.run_benchmark:
            detector.predict(img_file, FLAGS.threshold, warmup=10, repeats=10)
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
            results = detector.predict(img_file, FLAGS.threshold)
Z
zhiboniu 已提交
335 336 337 338 339 340 341
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
            draw_pose(
                img_file,
                results,
                visual_thread=FLAGS.threshold,
                save_dir=FLAGS.output_dir)
342 343 344 345 346 347 348 349


def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
350 351
        video_name = os.path.splitext(os.path.basename(FLAGS.video_file))[
            0] + '.mp4'
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    fps = 30
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name + '.mp4')
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break

        print('detect frame:%d' % (index))
        index += 1
        results = detector.predict(frame, FLAGS.threshold)
        im = draw_pose(
            frame, results, visual_thread=FLAGS.threshold, returnimg=True)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig_KeyPoint(FLAGS.model_dir)
    detector = KeyPoint_Detector(
        pred_config,
        FLAGS.model_dir,
G
Guanghua Yu 已提交
386
        device=FLAGS.device,
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, img_list)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
406 407
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
408 409
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            data_info = {
                'batch_size': 1,
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
            det_log('KeyPoint')
425 426 427 428 429 430 431


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
432 433 434 435
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
436 437

    main()