data_feed.py 36.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

import os
import inspect

from ppdet.core.workspace import register, serializable
from ppdet.utils.download import get_dataset_path

from ppdet.data.reader import Reader
# XXX these are for triggering the decorator
from ppdet.data.transform.operators import (
    DecodeImage, MixupImage, NormalizeBox, NormalizeImage, RandomDistort,
    RandomFlipImage, RandomInterpImage, ResizeImage, ExpandImage, CropImage,
30 31
    Permute, MultiscaleTestResize, Resize, ColorDistort, NormalizePermute,
    RandomExpand, RandomCrop)
32
from ppdet.data.transform.arrange_sample import (
W
wangguanzhong 已提交
33 34
    ArrangeRCNN, ArrangeEvalRCNN, ArrangeTestRCNN, ArrangeSSD, ArrangeEvalSSD,
    ArrangeTestSSD, ArrangeYOLO, ArrangeEvalYOLO, ArrangeTestYOLO)
35 36

__all__ = [
W
wangguanzhong 已提交
37 38 39 40 41 42
    'PadBatch', 'MultiScale', 'RandomShape', 'PadMSTest', 'DataSet',
    'CocoDataSet', 'DataFeed', 'TrainFeed', 'EvalFeed', 'FasterRCNNTrainFeed',
    'MaskRCNNTrainFeed', 'FasterRCNNEvalFeed', 'MaskRCNNEvalFeed',
    'FasterRCNNTestFeed', 'MaskRCNNTestFeed', 'SSDTrainFeed', 'SSDEvalFeed',
    'SSDTestFeed', 'YoloTrainFeed', 'YoloEvalFeed', 'YoloTestFeed',
    'create_reader'
43 44 45
]


46
def _prepare_data_config(feed, args_path):
47 48
    # if `DATASET_DIR` does not exists, search ~/.paddle/dataset for a directory
    # named `DATASET_DIR` (e.g., coco, pascal), if not present either, download
W
wangguanzhong 已提交
49 50
    dataset_home = args_path if args_path else feed.dataset.dataset_dir
    if dataset_home:
51 52
        annotation = getattr(feed.dataset, 'annotation', None)
        image_dir = getattr(feed.dataset, 'image_dir', None)
W
wangguanzhong 已提交
53
        dataset_dir = get_dataset_path(dataset_home, annotation, image_dir)
54 55 56 57
        if annotation:
            feed.dataset.annotation = os.path.join(dataset_dir, annotation)
        if image_dir:
            feed.dataset.image_dir = os.path.join(dataset_dir, image_dir)
58 59 60 61 62 63

    mixup_epoch = -1
    if getattr(feed, 'mixup_epoch', None) is not None:
        mixup_epoch = feed.mixup_epoch

    data_config = {
64 65 66 67 68 69 70 71
        'ANNO_FILE': feed.dataset.annotation,
        'IMAGE_DIR': feed.dataset.image_dir,
        'USE_DEFAULT_LABEL': feed.dataset.use_default_label,
        'IS_SHUFFLE': feed.shuffle,
        'SAMPLES': feed.samples,
        'WITH_BACKGROUND': feed.with_background,
        'MIXUP_EPOCH': mixup_epoch,
        'TYPE': type(feed.dataset).__source__
72 73
    }

74 75 76 77
    if feed.mode == 'TRAIN':
        data_config['CLASS_AWARE_SAMPLING'] = getattr(
            feed, 'class_aware_sampling', False)

78
    if len(getattr(feed.dataset, 'images', [])) > 0:
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
        data_config['IMAGES'] = feed.dataset.images

    return data_config


def create_reader(feed, max_iter=0, args_path=None, my_source=None):
    """
    Return iterable data reader.

    Args:
        max_iter (int): number of iterations.
        my_source (callable): callable function to create a source iterator
            which is used to provide source data in 'ppdet.data.reader'
    """

    # if `DATASET_DIR` does not exists, search ~/.paddle/dataset for a directory
    # named `DATASET_DIR` (e.g., coco, pascal), if not present either, download
    data_config = _prepare_data_config(feed, args_path)
97

W
walloollaw 已提交
98 99 100
    bufsize = getattr(feed, 'bufsize', 10)
    use_process = getattr(feed, 'use_process', False)
    memsize = getattr(feed, 'memsize', '3G')
101 102 103 104
    transform_config = {
        'WORKER_CONF': {
            'bufsize': bufsize,
            'worker_num': feed.num_workers,
W
walloollaw 已提交
105 106
            'use_process': use_process,
            'memsize': memsize
107 108 109 110 111 112 113 114 115 116
        },
        'BATCH_SIZE': feed.batch_size,
        'DROP_LAST': feed.drop_last,
        'USE_PADDED_IM_INFO': feed.use_padded_im_info,
    }

    batch_transforms = feed.batch_transforms
    pad = [t for t in batch_transforms if isinstance(t, PadBatch)]
    rand_shape = [t for t in batch_transforms if isinstance(t, RandomShape)]
    multi_scale = [t for t in batch_transforms if isinstance(t, MultiScale)]
W
wangguanzhong 已提交
117
    pad_ms_test = [t for t in batch_transforms if isinstance(t, PadMSTest)]
118 119 120 121 122 123 124 125 126

    if any(pad):
        transform_config['IS_PADDING'] = True
        if pad[0].pad_to_stride != 0:
            transform_config['COARSEST_STRIDE'] = pad[0].pad_to_stride
    if any(rand_shape):
        transform_config['RANDOM_SHAPES'] = rand_shape[0].sizes
    if any(multi_scale):
        transform_config['MULTI_SCALES'] = multi_scale[0].scales
W
wangguanzhong 已提交
127 128 129 130
    if any(pad_ms_test):
        transform_config['ENABLE_MULTISCALE_TEST'] = True
        transform_config['NUM_SCALE'] = feed.num_scale
        transform_config['COARSEST_STRIDE'] = pad_ms_test[0].pad_to_stride
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    if hasattr(inspect, 'getfullargspec'):
        argspec = inspect.getfullargspec
    else:
        argspec = inspect.getargspec

    ops = []
    for op in feed.sample_transforms:
        op_dict = op.__dict__.copy()
        argnames = [
            arg for arg in argspec(type(op).__init__).args if arg != 'self'
        ]
        op_dict = {k: v for k, v in op_dict.items() if k in argnames}
        op_dict['op'] = op.__class__.__name__
        ops.append(op_dict)
    transform_config['OPS'] = ops

148 149
    return Reader.create(feed.mode, data_config, transform_config, max_iter,
                         my_source)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194


# XXX batch transforms are only stubs for now, actually handled by `post_map`
@serializable
class PadBatch(object):
    """
    Pad a batch of samples to same dimensions

    Args:
        pad_to_stride (int): pad to multiple of strides, e.g., 32
    """

    def __init__(self, pad_to_stride=0):
        super(PadBatch, self).__init__()
        self.pad_to_stride = pad_to_stride


@serializable
class MultiScale(object):
    """
    Randomly resize image by scale

    Args:
        scales (list): list of int, randomly resize to one of these scales
    """

    def __init__(self, scales=[]):
        super(MultiScale, self).__init__()
        self.scales = scales


@serializable
class RandomShape(object):
    """
    Randomly reshape a batch

    Args:
        sizes (list): list of int, random choose a size from these
    """

    def __init__(self, sizes=[]):
        super(RandomShape, self).__init__()
        self.sizes = sizes


W
wangguanzhong 已提交
195 196 197 198
@serializable
class PadMSTest(object):
    """
    Padding for multi-scale test
199

W
wangguanzhong 已提交
200 201 202 203 204 205 206 207 208
    Args:
        pad_to_stride (int): pad to multiple of strides, e.g., 32
    """

    def __init__(self, pad_to_stride=0):
        super(PadMSTest, self).__init__()
        self.pad_to_stride = pad_to_stride


209 210 211 212 213 214 215 216 217 218 219 220 221 222
@serializable
class DataSet(object):
    """
    Dataset, e.g., coco, pascal voc

    Args:
        annotation (str): annotation file path
        image_dir (str): directory where image files are stored
        shuffle (bool): shuffle samples
    """
    __source__ = 'RoiDbSource'

    def __init__(self,
                 annotation,
K
Kaipeng Deng 已提交
223
                 image_dir=None,
224 225 226 227 228 229 230 231 232
                 dataset_dir=None,
                 use_default_label=None):
        super(DataSet, self).__init__()
        self.dataset_dir = dataset_dir
        self.annotation = annotation
        self.image_dir = image_dir
        self.use_default_label = use_default_label


K
Kaipeng Deng 已提交
233
COCO_DATASET_DIR = 'dataset/coco'
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
COCO_TRAIN_ANNOTATION = 'annotations/instances_train2017.json'
COCO_TRAIN_IMAGE_DIR = 'train2017'
COCO_VAL_ANNOTATION = 'annotations/instances_val2017.json'
COCO_VAL_IMAGE_DIR = 'val2017'


@serializable
class CocoDataSet(DataSet):
    def __init__(self,
                 dataset_dir=COCO_DATASET_DIR,
                 annotation=COCO_TRAIN_ANNOTATION,
                 image_dir=COCO_TRAIN_IMAGE_DIR):
        super(CocoDataSet, self).__init__(
            dataset_dir=dataset_dir, annotation=annotation, image_dir=image_dir)


K
Kaipeng Deng 已提交
250 251 252 253 254
VOC_DATASET_DIR = 'dataset/voc'
VOC_TRAIN_ANNOTATION = 'train.txt'
VOC_VAL_ANNOTATION = 'val.txt'
VOC_IMAGE_DIR = None
VOC_USE_DEFAULT_LABEL = True
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304


@serializable
class VocDataSet(DataSet):
    __source__ = 'VOCSource'

    def __init__(self,
                 dataset_dir=VOC_DATASET_DIR,
                 annotation=VOC_TRAIN_ANNOTATION,
                 image_dir=VOC_IMAGE_DIR,
                 use_default_label=VOC_USE_DEFAULT_LABEL):
        super(VocDataSet, self).__init__(
            dataset_dir=dataset_dir,
            annotation=annotation,
            image_dir=image_dir,
            use_default_label=use_default_label)


@serializable
class SimpleDataSet(DataSet):
    __source__ = 'SimpleSource'

    def __init__(self,
                 dataset_dir=None,
                 annotation=None,
                 image_dir=None,
                 use_default_label=None):
        super(SimpleDataSet, self).__init__(
            dataset_dir=dataset_dir, annotation=annotation, image_dir=image_dir)
        self.images = []

    def add_images(self, images):
        self.images.extend(images)


@serializable
class DataFeed(object):
    """
    DataFeed encompasses all data loading related settings

    Args:
        dataset (object): a `Dataset` instance
        fields (list): list of data fields needed
        image_shape (list): list of image dims (C, MAX_DIM, MIN_DIM)
        sample_transforms (list): list of sample transformations to use
        batch_transforms (list): list of batch transformations to use
        batch_size (int): number of images per device
        shuffle (bool): if samples should be shuffled
        drop_last (bool): drop last batch if size is uneven
        num_workers (int): number of workers processes (or threads)
W
walloollaw 已提交
305 306 307 308
        bufsize (int): size of queue used to buffer results from workers
        use_process (bool): use process or thread as workers
        memsize (str): size of shared memory used in result queue
                        when 'use_process' is True, default to '3G'
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    """
    __category__ = 'data'

    def __init__(self,
                 dataset,
                 fields,
                 image_shape,
                 sample_transforms=None,
                 batch_transforms=None,
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 with_background=True,
                 num_workers=2,
                 bufsize=10,
                 use_process=False,
W
walloollaw 已提交
326
                 memsize=None,
327 328
                 use_padded_im_info=False,
                 class_aware_sampling=False):
329 330 331 332 333 334 335 336 337 338 339 340 341
        super(DataFeed, self).__init__()
        self.fields = fields
        self.image_shape = image_shape
        self.sample_transforms = sample_transforms
        self.batch_transforms = batch_transforms
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.samples = samples
        self.drop_last = drop_last
        self.with_background = with_background
        self.num_workers = num_workers
        self.bufsize = bufsize
        self.use_process = use_process
W
walloollaw 已提交
342
        self.memsize = memsize
343 344
        self.dataset = dataset
        self.use_padded_im_info = use_padded_im_info
345
        self.class_aware_sampling = class_aware_sampling
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        if isinstance(dataset, dict):
            self.dataset = DataSet(**dataset)


# for custom (i.e., Non-preset) datasets
@register
class TrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset,
                 fields,
                 image_shape,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=True,
                 samples=-1,
                 drop_last=False,
                 with_background=True,
                 num_workers=2,
                 bufsize=10,
W
walloollaw 已提交
368 369
                 use_process=True,
                 memsize=None):
370 371 372 373 374 375 376 377 378 379 380 381 382
        super(TrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers,
            bufsize=bufsize,
W
walloollaw 已提交
383 384
            use_process=use_process,
            memsize=memsize)
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444


@register
class EvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset,
                 fields,
                 image_shape,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 with_background=True,
                 num_workers=2):
        super(EvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers)


@register
class TestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset,
                 fields,
                 image_shape,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 with_background=True,
                 num_workers=2):
        super(TestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers)


445
# yapf: disable
446 447 448 449 450 451 452 453 454 455
@register
class FasterRCNNTrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet().__dict__,
                 fields=[
                     'image', 'im_info', 'im_id', 'gt_box', 'gt_label',
                     'is_crowd'
                 ],
456
                 image_shape=[None, 3, None, None],
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     RandomFlipImage(prob=0.5),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     ResizeImage(target_size=800, max_size=1333, interp=1),
                     Permute(to_bgr=False)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=True,
                 samples=-1,
                 drop_last=False,
W
walloollaw 已提交
472
                 bufsize=10,
473
                 num_workers=2,
W
walloollaw 已提交
474
                 use_process=False,
475 476
                 memsize=None,
                 class_aware_sampling=False):
477 478 479 480 481 482 483 484 485 486 487 488 489
        # XXX this should be handled by the data loader, since `fields` is
        # given, just collect them
        sample_transforms.append(ArrangeRCNN())
        super(FasterRCNNTrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
W
walloollaw 已提交
490
            bufsize=bufsize,
491
            num_workers=num_workers,
W
walloollaw 已提交
492
            use_process=use_process,
493 494
            memsize=memsize,
            class_aware_sampling=class_aware_sampling)
495 496 497 498 499 500 501 502 503 504 505
        # XXX these modes should be unified
        self.mode = 'TRAIN'


@register
class FasterRCNNEvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet(COCO_VAL_ANNOTATION,
                                     COCO_VAL_IMAGE_DIR).__dict__,
W
wangguanzhong 已提交
506 507
                 fields=['image', 'im_info', 'im_id', 'im_shape', 'gt_box',
                         'gt_label', 'is_difficult'],
508
                 image_shape=[None, 3, None, None],
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     ResizeImage(target_size=800, max_size=1333, interp=1),
                     Permute(to_bgr=False)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
W
wangguanzhong 已提交
524 525 526 527
                 use_padded_im_info=True,
                 enable_multiscale=False,
                 num_scale=1,
                 enable_aug_flip=False):
W
wangguanzhong 已提交
528
        sample_transforms.append(ArrangeEvalRCNN())
529 530 531 532 533 534 535 536 537 538 539 540 541
        super(FasterRCNNEvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_padded_im_info=use_padded_im_info)
        self.mode = 'VAL'
W
wangguanzhong 已提交
542 543 544
        self.enable_multiscale = enable_multiscale
        self.num_scale = num_scale
        self.enable_aug_flip = enable_aug_flip
545 546 547 548 549 550 551 552 553 554


@register
class FasterRCNNTestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=SimpleDataSet(COCO_VAL_ANNOTATION,
                                       COCO_VAL_IMAGE_DIR).__dict__,
                 fields=['image', 'im_info', 'im_id', 'im_shape'],
555
                 image_shape=[None, 3, None, None],
556 557 558 559 560 561
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
562
                     ResizeImage(target_size=800, max_size=1333, interp=1),
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
                     Permute(to_bgr=False)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_padded_im_info=True):
        sample_transforms.append(ArrangeTestRCNN())
        if isinstance(dataset, dict):
            dataset = SimpleDataSet(**dataset)
        super(FasterRCNNTestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_padded_im_info=use_padded_im_info)
        self.mode = 'TEST'


# XXX currently use two presets, in the future, these should be combined into a
# single `RCNNTrainFeed`. Mask (and keypoint) should be processed
# automatically if `gt_mask` (or `gt_keypoints`) is in the required fields
@register
class MaskRCNNTrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet().__dict__,
                 fields=[
                     'image', 'im_info', 'im_id', 'gt_box', 'gt_label',
                     'is_crowd', 'gt_mask'
                 ],
603
                 image_shape=[None, 3, None, None],
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     RandomFlipImage(prob=0.5, is_mask_flip=True),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     ResizeImage(target_size=800,
                                 max_size=1333,
                                 interp=1,
                                 use_cv2=True),
                     Permute(to_bgr=False, channel_first=True)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=True,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_process=False,
                 use_padded_im_info=False):
        sample_transforms.append(ArrangeRCNN(is_mask=True))
        super(MaskRCNNTrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_process=use_process)
        self.mode = 'TRAIN'


@register
class MaskRCNNEvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet(COCO_VAL_ANNOTATION,
                                     COCO_VAL_IMAGE_DIR).__dict__,
                 fields=['image', 'im_info', 'im_id', 'im_shape'],
649
                 image_shape=[None, 3, None, None],
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     ResizeImage(target_size=800,
                                 max_size=1333,
                                 interp=1,
                                 use_cv2=True),
                     Permute(to_bgr=False, channel_first=True)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_process=False,
W
wangguanzhong 已提交
669 670 671 672
                 use_padded_im_info=True,
                 enable_multiscale=False,
                 num_scale=1,
                 enable_aug_flip=False):
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
        sample_transforms.append(ArrangeTestRCNN())
        super(MaskRCNNEvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_process=use_process,
            use_padded_im_info=use_padded_im_info)
        self.mode = 'VAL'
W
wangguanzhong 已提交
688 689 690
        self.enable_multiscale = enable_multiscale
        self.num_scale = num_scale
        self.enable_aug_flip = enable_aug_flip
691 692 693 694 695 696 697 698 699 700


@register
class MaskRCNNTestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=SimpleDataSet(COCO_VAL_ANNOTATION,
                                       COCO_VAL_IMAGE_DIR).__dict__,
                 fields=['image', 'im_info', 'im_id', 'im_shape'],
701
                 image_shape=[None, 3, None, None],
702 703 704 705 706 707 708
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     NormalizeImage(
                         mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225],
                         is_scale=True,
                         is_channel_first=False),
709
                     ResizeImage(target_size=800, max_size=1333, interp=1),
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
                     Permute(to_bgr=False, channel_first=True)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_process=False,
                 use_padded_im_info=True):
        sample_transforms.append(ArrangeTestRCNN())
        if isinstance(dataset, dict):
            dataset = SimpleDataSet(**dataset)
        super(MaskRCNNTestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_process=use_process,
            use_padded_im_info=use_padded_im_info)
        self.mode = 'TEST'


@register
class SSDTrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=VocDataSet().__dict__,
745
                 fields=['image', 'gt_box', 'gt_label'],
746
                 image_shape=[None, 3, 300, 300],
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
                 sample_transforms=[
                     DecodeImage(to_rgb=True, with_mixup=False),
                     NormalizeBox(),
                     RandomDistort(brightness_lower=0.875,
                                   brightness_upper=1.125,
                                   is_order=True),
                     ExpandImage(max_ratio=4, prob=0.5),
                     CropImage(batch_sampler=[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]],
                               satisfy_all=False, avoid_no_bbox=False),
                     ResizeImage(target_size=300, use_cv2=False, interp=1),
                     RandomFlipImage(is_normalized=True),
                     Permute(),
                     NormalizeImage(mean=[127.5, 127.5, 127.5],
                                    std=[127.502231, 127.502231, 127.502231],
                                    is_scale=False)
                 ],
                 batch_transforms=[],
                 batch_size=32,
                 shuffle=True,
                 samples=-1,
                 drop_last=True,
                 num_workers=8,
                 bufsize=10,
W
walloollaw 已提交
776 777
                 use_process=True,
                 memsize=None):
778 779 780 781 782 783 784 785 786 787 788 789
        sample_transforms.append(ArrangeSSD())
        super(SSDTrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
790
            bufsize=bufsize,
W
walloollaw 已提交
791 792
            use_process=use_process,
            memsize=None)
793 794 795 796 797 798 799 800 801 802
        self.mode = 'TRAIN'


@register
class SSDEvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(
            self,
            dataset=VocDataSet(VOC_VAL_ANNOTATION).__dict__,
803 804
            fields=['image', 'im_shape', 'im_id', 'gt_box',
                         'gt_label', 'is_difficult'],
805
            image_shape=[None, 3, 300, 300],
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
            sample_transforms=[
                DecodeImage(to_rgb=True, with_mixup=False),
                NormalizeBox(),
                ResizeImage(target_size=300, use_cv2=False, interp=1),
                Permute(),
                NormalizeImage(
                    mean=[127.5, 127.5, 127.5],
                    std=[127.502231, 127.502231, 127.502231],
                    is_scale=False)
            ],
            batch_transforms=[],
            batch_size=64,
            shuffle=False,
            samples=-1,
            drop_last=True,
            num_workers=8,
            bufsize=10,
W
walloollaw 已提交
823 824
            use_process=False,
            memsize=None):
825
        sample_transforms.append(ArrangeEvalSSD(fields))
826 827 828 829 830 831 832 833 834 835 836
        super(SSDEvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
837
            bufsize=bufsize,
W
walloollaw 已提交
838 839
            use_process=use_process,
            memsize=memsize)
840 841 842 843 844 845 846 847
        self.mode = 'VAL'


@register
class SSDTestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
K
Kaipeng Deng 已提交
848
                 dataset=SimpleDataSet(VOC_VAL_ANNOTATION).__dict__,
849
                 fields=['image', 'im_id', 'im_shape'],
850
                 image_shape=[None, 3, 300, 300],
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     ResizeImage(target_size=300, use_cv2=False, interp=1),
                     Permute(),
                     NormalizeImage(
                         mean=[127.5, 127.5, 127.5],
                         std=[127.502231, 127.502231, 127.502231],
                         is_scale=False)
                 ],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=8,
                 bufsize=10,
W
walloollaw 已提交
867 868
                 use_process=False,
                 memsize=None):
869 870 871 872 873 874 875 876 877 878 879 880 881
        sample_transforms.append(ArrangeTestSSD())
        if isinstance(dataset, dict):
            dataset = SimpleDataSet(**dataset)
        super(SSDTestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
882 883
            num_workers=num_workers,
            bufsize=bufsize,
W
walloollaw 已提交
884 885
            use_process=use_process,
            memsize=memsize)
886 887 888 889 890 891 892 893 894 895
        self.mode = 'TEST'


@register
class YoloTrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet().__dict__,
                 fields=['image', 'gt_box', 'gt_label', 'gt_score'],
896
                 image_shape=[None, 3, 608, 608],
897 898 899
                 sample_transforms=[
                     DecodeImage(to_rgb=True, with_mixup=True),
                     MixupImage(alpha=1.5, beta=1.5),
900 901 902 903 904 905 906 907
                     ColorDistort(),
                     RandomExpand(fill_value=[123.675, 116.28, 103.53]),
                     RandomCrop(),
                     RandomFlipImage(is_normalized=False),
                     Resize(target_dim=608, interp='random'),
                     NormalizePermute(
                         mean=[123.675, 116.28, 103.53],
                         std=[58.395, 57.120, 57.375]),
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
                     NormalizeBox(),
                 ],
                 batch_transforms=[
                     RandomShape(sizes=[
                         320, 352, 384, 416, 448, 480, 512, 544, 576, 608
                     ])
                 ],
                 batch_size=8,
                 shuffle=True,
                 samples=-1,
                 drop_last=True,
                 with_background=False,
                 num_workers=8,
                 bufsize=128,
                 use_process=True,
W
walloollaw 已提交
923
                 memsize=None,
924
                 num_max_boxes=50,
925 926
                 mixup_epoch=250,
                 class_aware_sampling=False):
927 928 929 930 931 932 933 934 935 936 937 938 939 940
        sample_transforms.append(ArrangeYOLO())
        super(YoloTrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers,
            bufsize=bufsize,
W
walloollaw 已提交
941
            use_process=use_process,
942 943
            memsize=memsize,
            class_aware_sampling=class_aware_sampling)
944 945 946 947 948 949 950 951 952 953 954 955
        self.num_max_boxes = num_max_boxes
        self.mixup_epoch = mixup_epoch
        self.mode = 'TRAIN'


@register
class YoloEvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet(COCO_VAL_ANNOTATION,
                                     COCO_VAL_IMAGE_DIR).__dict__,
956
                 fields=['image', 'im_size', 'im_id', 'gt_box',
957
                         'gt_label', 'is_difficult'],
958
                 image_shape=[None, 3, 608, 608],
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     ResizeImage(target_size=608, interp=2),
                     NormalizeImage(
                         mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225],
                         is_scale=True,
                         is_channel_first=False),
                     Permute(to_bgr=False),
                 ],
                 batch_transforms=[],
                 batch_size=8,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 with_background=False,
                 num_workers=8,
                 num_max_boxes=50,
W
walloollaw 已提交
977 978
                 use_process=False,
                 memsize=None):
979
        sample_transforms.append(ArrangeEvalYOLO())
980 981 982 983 984 985 986 987 988 989 990 991
        super(YoloEvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers,
W
walloollaw 已提交
992 993
            use_process=use_process,
            memsize=memsize)
994
        self.num_max_boxes = num_max_boxes
995 996 997
        self.mode = 'VAL'
        self.bufsize = 128

998 999 1000 1001 1002 1003
        # support image shape config, resize image with image_shape
        for i, trans in enumerate(sample_transforms):
            if isinstance(trans, ResizeImage):
                sample_transforms[i] = ResizeImage(
                        target_size=self.image_shape[-1],
                        interp=trans.interp)
1004 1005
            if isinstance(trans, Resize):
                sample_transforms[i].target_dim = self.image_shape[-1]
1006

1007 1008 1009 1010 1011 1012 1013 1014

@register
class YoloTestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=SimpleDataSet(COCO_VAL_ANNOTATION,
                                       COCO_VAL_IMAGE_DIR).__dict__,
1015
                 fields=['image', 'im_size', 'im_id'],
1016
                 image_shape=[None, 3, 608, 608],
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     ResizeImage(target_size=608, interp=2),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     Permute(to_bgr=False),
                 ],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 with_background=False,
                 num_workers=8,
                 num_max_boxes=50,
W
walloollaw 已提交
1034 1035
                 use_process=False,
                 memsize=None):
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
        sample_transforms.append(ArrangeTestYOLO())
        if isinstance(dataset, dict):
            dataset = SimpleDataSet(**dataset)
        super(YoloTestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers,
W
walloollaw 已提交
1051 1052
            use_process=use_process,
            memsize=memsize)
1053 1054
        self.mode = 'TEST'
        self.bufsize = 128
1055 1056 1057 1058 1059 1060 1061

        # support image shape config, resize image with image_shape
        for i, trans in enumerate(sample_transforms):
            if isinstance(trans, ResizeImage):
                sample_transforms[i] = ResizeImage(
                        target_size=self.image_shape[-1],
                        interp=trans.interp)
1062 1063
            if isinstance(trans, Resize):
                sample_transforms[i].target_dim = self.image_shape[-1]
1064
# yapf: enable