data_feed.py 35.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

import os
import inspect

from ppdet.core.workspace import register, serializable
from ppdet.utils.download import get_dataset_path

from ppdet.data.reader import Reader
# XXX these are for triggering the decorator
from ppdet.data.transform.operators import (
    DecodeImage, MixupImage, NormalizeBox, NormalizeImage, RandomDistort,
    RandomFlipImage, RandomInterpImage, ResizeImage, ExpandImage, CropImage,
    Permute)
31

32
from ppdet.data.transform.arrange_sample import (
33 34
    ArrangeRCNN, ArrangeTestRCNN, ArrangeSSD, ArrangeEvalSSD, ArrangeTestSSD, 
    ArrangeYOLO, ArrangeEvalYOLO, ArrangeTestYOLO)
35 36 37 38 39 40 41 42 43 44

__all__ = [
    'PadBatch', 'MultiScale', 'RandomShape', 'DataSet', 'CocoDataSet',
    'DataFeed', 'TrainFeed', 'EvalFeed', 'FasterRCNNTrainFeed',
    'MaskRCNNTrainFeed', 'FasterRCNNTestFeed', 'MaskRCNNTestFeed',
    'SSDTrainFeed', 'SSDEvalFeed', 'SSDTestFeed', 'YoloTrainFeed',
    'YoloEvalFeed', 'YoloTestFeed', 'create_reader'
]


45
def _prepare_data_config(feed, args_path):
46 47
    # if `DATASET_DIR` does not exists, search ~/.paddle/dataset for a directory
    # named `DATASET_DIR` (e.g., coco, pascal), if not present either, download
W
wangguanzhong 已提交
48 49
    dataset_home = args_path if args_path else feed.dataset.dataset_dir
    if dataset_home:
50 51
        annotation = getattr(feed.dataset, 'annotation', None)
        image_dir = getattr(feed.dataset, 'image_dir', None)
W
wangguanzhong 已提交
52
        dataset_dir = get_dataset_path(dataset_home, annotation, image_dir)
53 54 55 56
        if annotation:
            feed.dataset.annotation = os.path.join(dataset_dir, annotation)
        if image_dir:
            feed.dataset.image_dir = os.path.join(dataset_dir, image_dir)
57 58 59 60 61 62

    mixup_epoch = -1
    if getattr(feed, 'mixup_epoch', None) is not None:
        mixup_epoch = feed.mixup_epoch

    data_config = {
63 64 65 66 67 68 69 70
        'ANNO_FILE': feed.dataset.annotation,
        'IMAGE_DIR': feed.dataset.image_dir,
        'USE_DEFAULT_LABEL': feed.dataset.use_default_label,
        'IS_SHUFFLE': feed.shuffle,
        'SAMPLES': feed.samples,
        'WITH_BACKGROUND': feed.with_background,
        'MIXUP_EPOCH': mixup_epoch,
        'TYPE': type(feed.dataset).__source__
71 72 73
    }

    if len(getattr(feed.dataset, 'images', [])) > 0:
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        data_config['IMAGES'] = feed.dataset.images

    return data_config


def create_reader(feed, max_iter=0, args_path=None, my_source=None):
    """
    Return iterable data reader.

    Args:
        max_iter (int): number of iterations.
        my_source (callable): callable function to create a source iterator
            which is used to provide source data in 'ppdet.data.reader'
    """

    # if `DATASET_DIR` does not exists, search ~/.paddle/dataset for a directory
    # named `DATASET_DIR` (e.g., coco, pascal), if not present either, download
    data_config = _prepare_data_config(feed, args_path)
92

W
walloollaw 已提交
93 94 95
    bufsize = getattr(feed, 'bufsize', 10)
    use_process = getattr(feed, 'use_process', False)
    memsize = getattr(feed, 'memsize', '3G')
96 97 98 99
    transform_config = {
        'WORKER_CONF': {
            'bufsize': bufsize,
            'worker_num': feed.num_workers,
W
walloollaw 已提交
100 101
            'use_process': use_process,
            'memsize': memsize
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        },
        'BATCH_SIZE': feed.batch_size,
        'DROP_LAST': feed.drop_last,
        'USE_PADDED_IM_INFO': feed.use_padded_im_info,
    }

    batch_transforms = feed.batch_transforms
    pad = [t for t in batch_transforms if isinstance(t, PadBatch)]
    rand_shape = [t for t in batch_transforms if isinstance(t, RandomShape)]
    multi_scale = [t for t in batch_transforms if isinstance(t, MultiScale)]

    if any(pad):
        transform_config['IS_PADDING'] = True
        if pad[0].pad_to_stride != 0:
            transform_config['COARSEST_STRIDE'] = pad[0].pad_to_stride
    if any(rand_shape):
        transform_config['RANDOM_SHAPES'] = rand_shape[0].sizes
    if any(multi_scale):
        transform_config['MULTI_SCALES'] = multi_scale[0].scales

    if hasattr(inspect, 'getfullargspec'):
        argspec = inspect.getfullargspec
    else:
        argspec = inspect.getargspec

    ops = []
    for op in feed.sample_transforms:
        op_dict = op.__dict__.copy()
        argnames = [
            arg for arg in argspec(type(op).__init__).args if arg != 'self'
        ]
        op_dict = {k: v for k, v in op_dict.items() if k in argnames}
        op_dict['op'] = op.__class__.__name__
        ops.append(op_dict)
    transform_config['OPS'] = ops

138 139
    return Reader.create(feed.mode, data_config, transform_config, max_iter,
                         my_source)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281


# XXX batch transforms are only stubs for now, actually handled by `post_map`
@serializable
class PadBatch(object):
    """
    Pad a batch of samples to same dimensions

    Args:
        pad_to_stride (int): pad to multiple of strides, e.g., 32
    """

    def __init__(self, pad_to_stride=0):
        super(PadBatch, self).__init__()
        self.pad_to_stride = pad_to_stride


@serializable
class MultiScale(object):
    """
    Randomly resize image by scale

    Args:
        scales (list): list of int, randomly resize to one of these scales
    """

    def __init__(self, scales=[]):
        super(MultiScale, self).__init__()
        self.scales = scales


@serializable
class RandomShape(object):
    """
    Randomly reshape a batch

    Args:
        sizes (list): list of int, random choose a size from these
    """

    def __init__(self, sizes=[]):
        super(RandomShape, self).__init__()
        self.sizes = sizes


@serializable
class DataSet(object):
    """
    Dataset, e.g., coco, pascal voc

    Args:
        annotation (str): annotation file path
        image_dir (str): directory where image files are stored
        shuffle (bool): shuffle samples
    """
    __source__ = 'RoiDbSource'

    def __init__(self,
                 annotation,
                 image_dir,
                 dataset_dir=None,
                 use_default_label=None):
        super(DataSet, self).__init__()
        self.dataset_dir = dataset_dir
        self.annotation = annotation
        self.image_dir = image_dir
        self.use_default_label = use_default_label


COCO_DATASET_DIR = 'coco'
COCO_TRAIN_ANNOTATION = 'annotations/instances_train2017.json'
COCO_TRAIN_IMAGE_DIR = 'train2017'
COCO_VAL_ANNOTATION = 'annotations/instances_val2017.json'
COCO_VAL_IMAGE_DIR = 'val2017'


@serializable
class CocoDataSet(DataSet):
    def __init__(self,
                 dataset_dir=COCO_DATASET_DIR,
                 annotation=COCO_TRAIN_ANNOTATION,
                 image_dir=COCO_TRAIN_IMAGE_DIR):
        super(CocoDataSet, self).__init__(
            dataset_dir=dataset_dir, annotation=annotation, image_dir=image_dir)


VOC_DATASET_DIR = 'pascalvoc'
VOC_TRAIN_ANNOTATION = 'VOCdevkit/VOC_all/ImageSets/Main/train.txt'
VOC_VAL_ANNOTATION = 'VOCdevkit/VOC_all/ImageSets/Main/val.txt'
VOC_TEST_ANNOTATION = 'VOCdevkit/VOC_all/ImageSets/Main/test.txt'
VOC_IMAGE_DIR = 'VOCdevkit/VOC_all/JPEGImages'
VOC_USE_DEFAULT_LABEL = None


@serializable
class VocDataSet(DataSet):
    __source__ = 'VOCSource'

    def __init__(self,
                 dataset_dir=VOC_DATASET_DIR,
                 annotation=VOC_TRAIN_ANNOTATION,
                 image_dir=VOC_IMAGE_DIR,
                 use_default_label=VOC_USE_DEFAULT_LABEL):
        super(VocDataSet, self).__init__(
            dataset_dir=dataset_dir,
            annotation=annotation,
            image_dir=image_dir,
            use_default_label=use_default_label)


@serializable
class SimpleDataSet(DataSet):
    __source__ = 'SimpleSource'

    def __init__(self,
                 dataset_dir=None,
                 annotation=None,
                 image_dir=None,
                 use_default_label=None):
        super(SimpleDataSet, self).__init__(
            dataset_dir=dataset_dir, annotation=annotation, image_dir=image_dir)
        self.images = []

    def add_images(self, images):
        self.images.extend(images)


@serializable
class DataFeed(object):
    """
    DataFeed encompasses all data loading related settings

    Args:
        dataset (object): a `Dataset` instance
        fields (list): list of data fields needed
        image_shape (list): list of image dims (C, MAX_DIM, MIN_DIM)
        sample_transforms (list): list of sample transformations to use
        batch_transforms (list): list of batch transformations to use
        batch_size (int): number of images per device
        shuffle (bool): if samples should be shuffled
        drop_last (bool): drop last batch if size is uneven
        num_workers (int): number of workers processes (or threads)
W
walloollaw 已提交
282 283 284 285
        bufsize (int): size of queue used to buffer results from workers
        use_process (bool): use process or thread as workers
        memsize (str): size of shared memory used in result queue
                        when 'use_process' is True, default to '3G'
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    """
    __category__ = 'data'

    def __init__(self,
                 dataset,
                 fields,
                 image_shape,
                 sample_transforms=None,
                 batch_transforms=None,
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 with_background=True,
                 num_workers=2,
                 bufsize=10,
                 use_process=False,
W
walloollaw 已提交
303
                 memsize=None,
304 305 306 307 308 309 310 311 312 313 314 315 316 317
                 use_padded_im_info=False):
        super(DataFeed, self).__init__()
        self.fields = fields
        self.image_shape = image_shape
        self.sample_transforms = sample_transforms
        self.batch_transforms = batch_transforms
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.samples = samples
        self.drop_last = drop_last
        self.with_background = with_background
        self.num_workers = num_workers
        self.bufsize = bufsize
        self.use_process = use_process
W
walloollaw 已提交
318
        self.memsize = memsize
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        self.dataset = dataset
        self.use_padded_im_info = use_padded_im_info
        if isinstance(dataset, dict):
            self.dataset = DataSet(**dataset)


# for custom (i.e., Non-preset) datasets
@register
class TrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset,
                 fields,
                 image_shape,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=True,
                 samples=-1,
                 drop_last=False,
                 with_background=True,
                 num_workers=2,
                 bufsize=10,
W
walloollaw 已提交
343 344
                 use_process=True,
                 memsize=None):
345 346 347 348 349 350 351 352 353 354 355 356 357
        super(TrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers,
            bufsize=bufsize,
W
walloollaw 已提交
358 359
            use_process=use_process,
            memsize=memsize)
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419


@register
class EvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset,
                 fields,
                 image_shape,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 with_background=True,
                 num_workers=2):
        super(EvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers)


@register
class TestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset,
                 fields,
                 image_shape,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 with_background=True,
                 num_workers=2):
        super(TestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers)


420
# yapf: disable
421 422 423 424 425 426 427 428 429 430
@register
class FasterRCNNTrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet().__dict__,
                 fields=[
                     'image', 'im_info', 'im_id', 'gt_box', 'gt_label',
                     'is_crowd'
                 ],
431
                 image_shape=[3, 800, 1333],
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     RandomFlipImage(prob=0.5),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     ResizeImage(target_size=800, max_size=1333, interp=1),
                     Permute(to_bgr=False)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=True,
                 samples=-1,
                 drop_last=False,
W
walloollaw 已提交
447
                 bufsize=10,
448
                 num_workers=2,
W
walloollaw 已提交
449 450
                 use_process=False,
                 memsize=None):
451 452 453 454 455 456 457 458 459 460 461 462 463
        # XXX this should be handled by the data loader, since `fields` is
        # given, just collect them
        sample_transforms.append(ArrangeRCNN())
        super(FasterRCNNTrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
W
walloollaw 已提交
464
            bufsize=bufsize,
465
            num_workers=num_workers,
W
walloollaw 已提交
466 467
            use_process=use_process,
            memsize=memsize)
468 469 470 471 472 473 474 475 476 477 478 479
        # XXX these modes should be unified
        self.mode = 'TRAIN'


@register
class FasterRCNNEvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet(COCO_VAL_ANNOTATION,
                                     COCO_VAL_IMAGE_DIR).__dict__,
                 fields=['image', 'im_info', 'im_id', 'im_shape'],
480
                 image_shape=[3, 800, 1333],
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     ResizeImage(target_size=800, max_size=1333, interp=1),
                     Permute(to_bgr=False)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_padded_im_info=True):
        sample_transforms.append(ArrangeTestRCNN())
        super(FasterRCNNEvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_padded_im_info=use_padded_im_info)
        self.mode = 'VAL'


@register
class FasterRCNNTestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=SimpleDataSet(COCO_VAL_ANNOTATION,
                                       COCO_VAL_IMAGE_DIR).__dict__,
                 fields=['image', 'im_info', 'im_id', 'im_shape'],
521
                 image_shape=[3, 800, 1333],
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     Permute(to_bgr=False)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_padded_im_info=True):
        sample_transforms.append(ArrangeTestRCNN())
        if isinstance(dataset, dict):
            dataset = SimpleDataSet(**dataset)
        super(FasterRCNNTestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_padded_im_info=use_padded_im_info)
        self.mode = 'TEST'


# XXX currently use two presets, in the future, these should be combined into a
# single `RCNNTrainFeed`. Mask (and keypoint) should be processed
# automatically if `gt_mask` (or `gt_keypoints`) is in the required fields
@register
class MaskRCNNTrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet().__dict__,
                 fields=[
                     'image', 'im_info', 'im_id', 'gt_box', 'gt_label',
                     'is_crowd', 'gt_mask'
                 ],
568
                 image_shape=[3, 800, 1333],
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     RandomFlipImage(prob=0.5, is_mask_flip=True),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     ResizeImage(target_size=800,
                                 max_size=1333,
                                 interp=1,
                                 use_cv2=True),
                     Permute(to_bgr=False, channel_first=True)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=True,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_process=False,
                 use_padded_im_info=False):
        sample_transforms.append(ArrangeRCNN(is_mask=True))
        super(MaskRCNNTrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_process=use_process)
        self.mode = 'TRAIN'


@register
class MaskRCNNEvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet(COCO_VAL_ANNOTATION,
                                     COCO_VAL_IMAGE_DIR).__dict__,
                 fields=['image', 'im_info', 'im_id', 'im_shape'],
614
                 image_shape=[3, 800, 1333],
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     ResizeImage(target_size=800,
                                 max_size=1333,
                                 interp=1,
                                 use_cv2=True),
                     Permute(to_bgr=False, channel_first=True)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_process=False,
                 use_padded_im_info=True):
        sample_transforms.append(ArrangeTestRCNN())
        super(MaskRCNNEvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_process=use_process,
            use_padded_im_info=use_padded_im_info)
        self.mode = 'VAL'


@register
class MaskRCNNTestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=SimpleDataSet(COCO_VAL_ANNOTATION,
                                       COCO_VAL_IMAGE_DIR).__dict__,
                 fields=['image', 'im_info', 'im_id', 'im_shape'],
660
                 image_shape=[3, 800, 1333],
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     NormalizeImage(
                         mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225],
                         is_scale=True,
                         is_channel_first=False),
                     Permute(to_bgr=False, channel_first=True)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_process=False,
                 use_padded_im_info=True):
        sample_transforms.append(ArrangeTestRCNN())
        if isinstance(dataset, dict):
            dataset = SimpleDataSet(**dataset)
        super(MaskRCNNTestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_process=use_process,
            use_padded_im_info=use_padded_im_info)
        self.mode = 'TEST'


@register
class SSDTrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=VocDataSet().__dict__,
703
                 fields=['image', 'gt_box', 'gt_label'],
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
                 image_shape=[3, 300, 300],
                 sample_transforms=[
                     DecodeImage(to_rgb=True, with_mixup=False),
                     NormalizeBox(),
                     RandomDistort(brightness_lower=0.875,
                                   brightness_upper=1.125,
                                   is_order=True),
                     ExpandImage(max_ratio=4, prob=0.5),
                     CropImage(batch_sampler=[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]],
                               satisfy_all=False, avoid_no_bbox=False),
                     ResizeImage(target_size=300, use_cv2=False, interp=1),
                     RandomFlipImage(is_normalized=True),
                     Permute(),
                     NormalizeImage(mean=[127.5, 127.5, 127.5],
                                    std=[127.502231, 127.502231, 127.502231],
                                    is_scale=False)
                 ],
                 batch_transforms=[],
                 batch_size=32,
                 shuffle=True,
                 samples=-1,
                 drop_last=True,
                 num_workers=8,
                 bufsize=10,
W
walloollaw 已提交
734 735
                 use_process=True,
                 memsize=None):
736 737 738 739 740 741 742 743 744 745 746 747
        sample_transforms.append(ArrangeSSD())
        super(SSDTrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
748
            bufsize=bufsize,
W
walloollaw 已提交
749 750
            use_process=use_process,
            memsize=None)
751 752 753 754 755 756 757 758 759 760
        self.mode = 'TRAIN'


@register
class SSDEvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(
            self,
            dataset=VocDataSet(VOC_VAL_ANNOTATION).__dict__,
761 762
            fields=['image', 'im_shape', 'im_id', 'gt_box',
                         'gt_label', 'is_difficult'],
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
            image_shape=[3, 300, 300],
            sample_transforms=[
                DecodeImage(to_rgb=True, with_mixup=False),
                NormalizeBox(),
                ResizeImage(target_size=300, use_cv2=False, interp=1),
                Permute(),
                NormalizeImage(
                    mean=[127.5, 127.5, 127.5],
                    std=[127.502231, 127.502231, 127.502231],
                    is_scale=False)
            ],
            batch_transforms=[],
            batch_size=64,
            shuffle=False,
            samples=-1,
            drop_last=True,
            num_workers=8,
            bufsize=10,
W
walloollaw 已提交
781 782
            use_process=False,
            memsize=None):
783
        sample_transforms.append(ArrangeEvalSSD())
784 785 786 787 788 789 790 791 792 793 794
        super(SSDEvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
795
            bufsize=bufsize,
W
walloollaw 已提交
796 797
            use_process=use_process,
            memsize=memsize)
798 799 800 801 802 803 804 805 806
        self.mode = 'VAL'


@register
class SSDTestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=SimpleDataSet(VOC_TEST_ANNOTATION).__dict__,
807
                 fields=['image', 'im_id', 'im_shape'],
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
                 image_shape=[3, 300, 300],
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     ResizeImage(target_size=300, use_cv2=False, interp=1),
                     Permute(),
                     NormalizeImage(
                         mean=[127.5, 127.5, 127.5],
                         std=[127.502231, 127.502231, 127.502231],
                         is_scale=False)
                 ],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=8,
                 bufsize=10,
W
walloollaw 已提交
825 826
                 use_process=False,
                 memsize=None):
827 828 829 830 831 832 833 834 835 836 837 838 839
        sample_transforms.append(ArrangeTestSSD())
        if isinstance(dataset, dict):
            dataset = SimpleDataSet(**dataset)
        super(SSDTestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
840 841
            num_workers=num_workers,
            bufsize=bufsize,
W
walloollaw 已提交
842 843
            use_process=use_process,
            memsize=memsize)
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
        self.mode = 'TEST'


@register
class YoloTrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet().__dict__,
                 fields=['image', 'gt_box', 'gt_label', 'gt_score'],
                 image_shape=[3, 608, 608],
                 sample_transforms=[
                     DecodeImage(to_rgb=True, with_mixup=True),
                     MixupImage(alpha=1.5, beta=1.5),
                     NormalizeBox(),
                     RandomDistort(),
                     ExpandImage(max_ratio=4., prob=.5,
                                 mean=[123.675, 116.28, 103.53]),
                     CropImage([[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]),
                     RandomInterpImage(target_size=608),
                     RandomFlipImage(is_normalized=True),
                     NormalizeImage(
                         mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225],
                         is_scale=True,
                         is_channel_first=False),
                     Permute(to_bgr=False),
                 ],
                 batch_transforms=[
                     RandomShape(sizes=[
                         320, 352, 384, 416, 448, 480, 512, 544, 576, 608
                     ])
                 ],
                 batch_size=8,
                 shuffle=True,
                 samples=-1,
                 drop_last=True,
                 with_background=False,
                 num_workers=8,
                 bufsize=128,
                 use_process=True,
W
walloollaw 已提交
891
                 memsize=None,
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
                 num_max_boxes=50,
                 mixup_epoch=250):
        sample_transforms.append(ArrangeYOLO())
        super(YoloTrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers,
            bufsize=bufsize,
W
walloollaw 已提交
908 909
            use_process=use_process,
            memsize=memsize)
910 911 912 913 914 915 916 917 918 919 920 921
        self.num_max_boxes = num_max_boxes
        self.mixup_epoch = mixup_epoch
        self.mode = 'TRAIN'


@register
class YoloEvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet(COCO_VAL_ANNOTATION,
                                     COCO_VAL_IMAGE_DIR).__dict__,
922
                 fields=['image', 'im_size', 'im_id', 'gt_box',
923
                         'gt_label', 'is_difficult'],
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
                 image_shape=[3, 608, 608],
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     ResizeImage(target_size=608, interp=2),
                     NormalizeImage(
                         mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225],
                         is_scale=True,
                         is_channel_first=False),
                     Permute(to_bgr=False),
                 ],
                 batch_transforms=[],
                 batch_size=8,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 with_background=False,
                 num_workers=8,
                 num_max_boxes=50,
W
walloollaw 已提交
943 944
                 use_process=False,
                 memsize=None):
945
        sample_transforms.append(ArrangeEvalYOLO())
946 947 948 949 950 951 952 953 954 955 956 957
        super(YoloEvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers,
W
walloollaw 已提交
958 959
            use_process=use_process,
            memsize=memsize)
960
        self.num_max_boxes = num_max_boxes
961 962 963
        self.mode = 'VAL'
        self.bufsize = 128

964 965 966 967 968 969 970
        # support image shape config, resize image with image_shape
        for i, trans in enumerate(sample_transforms):
            if isinstance(trans, ResizeImage):
                sample_transforms[i] = ResizeImage(
                        target_size=self.image_shape[-1],
                        interp=trans.interp)

971 972 973 974 975 976 977 978

@register
class YoloTestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=SimpleDataSet(COCO_VAL_ANNOTATION,
                                       COCO_VAL_IMAGE_DIR).__dict__,
979
                 fields=['image', 'im_size', 'im_id'],
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
                 image_shape=[3, 608, 608],
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     ResizeImage(target_size=608, interp=2),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     Permute(to_bgr=False),
                 ],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 with_background=False,
                 num_workers=8,
                 num_max_boxes=50,
W
walloollaw 已提交
998 999
                 use_process=False,
                 memsize=None):
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        sample_transforms.append(ArrangeTestYOLO())
        if isinstance(dataset, dict):
            dataset = SimpleDataSet(**dataset)
        super(YoloTestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers,
W
walloollaw 已提交
1015 1016
            use_process=use_process,
            memsize=memsize)
1017 1018
        self.mode = 'TEST'
        self.bufsize = 128
1019 1020 1021 1022 1023 1024 1025

        # support image shape config, resize image with image_shape
        for i, trans in enumerate(sample_transforms):
            if isinstance(trans, ResizeImage):
                sample_transforms[i] = ResizeImage(
                        target_size=self.image_shape[-1],
                        interp=trans.interp)
1026
# yapf: enable