data_feed.py 33.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

import os
import inspect

from ppdet.core.workspace import register, serializable
from ppdet.utils.download import get_dataset_path

from ppdet.data.reader import Reader
# XXX these are for triggering the decorator
from ppdet.data.transform.operators import (
    DecodeImage, MixupImage, NormalizeBox, NormalizeImage, RandomDistort,
    RandomFlipImage, RandomInterpImage, ResizeImage, ExpandImage, CropImage,
    Permute)
31

32
from ppdet.data.transform.arrange_sample import (
33 34
    ArrangeRCNN, ArrangeTestRCNN, ArrangeSSD, ArrangeEvalSSD, ArrangeTestSSD, 
    ArrangeYOLO, ArrangeEvalYOLO, ArrangeTestYOLO)
35 36 37 38 39 40 41 42 43 44

__all__ = [
    'PadBatch', 'MultiScale', 'RandomShape', 'DataSet', 'CocoDataSet',
    'DataFeed', 'TrainFeed', 'EvalFeed', 'FasterRCNNTrainFeed',
    'MaskRCNNTrainFeed', 'FasterRCNNTestFeed', 'MaskRCNNTestFeed',
    'SSDTrainFeed', 'SSDEvalFeed', 'SSDTestFeed', 'YoloTrainFeed',
    'YoloEvalFeed', 'YoloTestFeed', 'create_reader'
]


45
def _prepare_data_config(feed, args_path):
46 47
    # if `DATASET_DIR` does not exists, search ~/.paddle/dataset for a directory
    # named `DATASET_DIR` (e.g., coco, pascal), if not present either, download
W
wangguanzhong 已提交
48 49
    dataset_home = args_path if args_path else feed.dataset.dataset_dir
    if dataset_home:
50 51
        annotation = getattr(feed.dataset, 'annotation', None)
        image_dir = getattr(feed.dataset, 'image_dir', None)
W
wangguanzhong 已提交
52
        dataset_dir = get_dataset_path(dataset_home, annotation, image_dir)
53 54 55 56
        if annotation:
            feed.dataset.annotation = os.path.join(dataset_dir, annotation)
        if image_dir:
            feed.dataset.image_dir = os.path.join(dataset_dir, image_dir)
57 58 59 60 61 62

    mixup_epoch = -1
    if getattr(feed, 'mixup_epoch', None) is not None:
        mixup_epoch = feed.mixup_epoch

    data_config = {
63 64 65 66 67 68 69 70
        'ANNO_FILE': feed.dataset.annotation,
        'IMAGE_DIR': feed.dataset.image_dir,
        'USE_DEFAULT_LABEL': feed.dataset.use_default_label,
        'IS_SHUFFLE': feed.shuffle,
        'SAMPLES': feed.samples,
        'WITH_BACKGROUND': feed.with_background,
        'MIXUP_EPOCH': mixup_epoch,
        'TYPE': type(feed.dataset).__source__
71 72 73
    }

    if len(getattr(feed.dataset, 'images', [])) > 0:
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        data_config['IMAGES'] = feed.dataset.images

    return data_config


def create_reader(feed, max_iter=0, args_path=None, my_source=None):
    """
    Return iterable data reader.

    Args:
        max_iter (int): number of iterations.
        my_source (callable): callable function to create a source iterator
            which is used to provide source data in 'ppdet.data.reader'
    """

    # if `DATASET_DIR` does not exists, search ~/.paddle/dataset for a directory
    # named `DATASET_DIR` (e.g., coco, pascal), if not present either, download
    data_config = _prepare_data_config(feed, args_path)
92

W
walloollaw 已提交
93 94 95 96 97 98 99
    bufsize = 10
    use_process = False
    if getattr(feed, 'bufsize', None) is not None:
        bufsize = feed.bufsize
    if getattr(feed, 'use_process', None) is not None:
        use_process = feed.use_process

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    transform_config = {
        'WORKER_CONF': {
            'bufsize': bufsize,
            'worker_num': feed.num_workers,
            'use_process': use_process
        },
        'BATCH_SIZE': feed.batch_size,
        'DROP_LAST': feed.drop_last,
        'USE_PADDED_IM_INFO': feed.use_padded_im_info,
    }

    batch_transforms = feed.batch_transforms
    pad = [t for t in batch_transforms if isinstance(t, PadBatch)]
    rand_shape = [t for t in batch_transforms if isinstance(t, RandomShape)]
    multi_scale = [t for t in batch_transforms if isinstance(t, MultiScale)]

    if any(pad):
        transform_config['IS_PADDING'] = True
        if pad[0].pad_to_stride != 0:
            transform_config['COARSEST_STRIDE'] = pad[0].pad_to_stride
    if any(rand_shape):
        transform_config['RANDOM_SHAPES'] = rand_shape[0].sizes
    if any(multi_scale):
        transform_config['MULTI_SCALES'] = multi_scale[0].scales

    if hasattr(inspect, 'getfullargspec'):
        argspec = inspect.getfullargspec
    else:
        argspec = inspect.getargspec

    ops = []
    for op in feed.sample_transforms:
        op_dict = op.__dict__.copy()
        argnames = [
            arg for arg in argspec(type(op).__init__).args if arg != 'self'
        ]
        op_dict = {k: v for k, v in op_dict.items() if k in argnames}
        op_dict['op'] = op.__class__.__name__
        ops.append(op_dict)
    transform_config['OPS'] = ops

141 142
    return Reader.create(feed.mode, data_config, transform_config, max_iter,
                         my_source)
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414


# XXX batch transforms are only stubs for now, actually handled by `post_map`
@serializable
class PadBatch(object):
    """
    Pad a batch of samples to same dimensions

    Args:
        pad_to_stride (int): pad to multiple of strides, e.g., 32
    """

    def __init__(self, pad_to_stride=0):
        super(PadBatch, self).__init__()
        self.pad_to_stride = pad_to_stride


@serializable
class MultiScale(object):
    """
    Randomly resize image by scale

    Args:
        scales (list): list of int, randomly resize to one of these scales
    """

    def __init__(self, scales=[]):
        super(MultiScale, self).__init__()
        self.scales = scales


@serializable
class RandomShape(object):
    """
    Randomly reshape a batch

    Args:
        sizes (list): list of int, random choose a size from these
    """

    def __init__(self, sizes=[]):
        super(RandomShape, self).__init__()
        self.sizes = sizes


@serializable
class DataSet(object):
    """
    Dataset, e.g., coco, pascal voc

    Args:
        annotation (str): annotation file path
        image_dir (str): directory where image files are stored
        shuffle (bool): shuffle samples
    """
    __source__ = 'RoiDbSource'

    def __init__(self,
                 annotation,
                 image_dir,
                 dataset_dir=None,
                 use_default_label=None):
        super(DataSet, self).__init__()
        self.dataset_dir = dataset_dir
        self.annotation = annotation
        self.image_dir = image_dir
        self.use_default_label = use_default_label


COCO_DATASET_DIR = 'coco'
COCO_TRAIN_ANNOTATION = 'annotations/instances_train2017.json'
COCO_TRAIN_IMAGE_DIR = 'train2017'
COCO_VAL_ANNOTATION = 'annotations/instances_val2017.json'
COCO_VAL_IMAGE_DIR = 'val2017'


@serializable
class CocoDataSet(DataSet):
    def __init__(self,
                 dataset_dir=COCO_DATASET_DIR,
                 annotation=COCO_TRAIN_ANNOTATION,
                 image_dir=COCO_TRAIN_IMAGE_DIR):
        super(CocoDataSet, self).__init__(
            dataset_dir=dataset_dir, annotation=annotation, image_dir=image_dir)


VOC_DATASET_DIR = 'pascalvoc'
VOC_TRAIN_ANNOTATION = 'VOCdevkit/VOC_all/ImageSets/Main/train.txt'
VOC_VAL_ANNOTATION = 'VOCdevkit/VOC_all/ImageSets/Main/val.txt'
VOC_TEST_ANNOTATION = 'VOCdevkit/VOC_all/ImageSets/Main/test.txt'
VOC_IMAGE_DIR = 'VOCdevkit/VOC_all/JPEGImages'
VOC_USE_DEFAULT_LABEL = None


@serializable
class VocDataSet(DataSet):
    __source__ = 'VOCSource'

    def __init__(self,
                 dataset_dir=VOC_DATASET_DIR,
                 annotation=VOC_TRAIN_ANNOTATION,
                 image_dir=VOC_IMAGE_DIR,
                 use_default_label=VOC_USE_DEFAULT_LABEL):
        super(VocDataSet, self).__init__(
            dataset_dir=dataset_dir,
            annotation=annotation,
            image_dir=image_dir,
            use_default_label=use_default_label)


@serializable
class SimpleDataSet(DataSet):
    __source__ = 'SimpleSource'

    def __init__(self,
                 dataset_dir=None,
                 annotation=None,
                 image_dir=None,
                 use_default_label=None):
        super(SimpleDataSet, self).__init__(
            dataset_dir=dataset_dir, annotation=annotation, image_dir=image_dir)
        self.images = []

    def add_images(self, images):
        self.images.extend(images)


@serializable
class DataFeed(object):
    """
    DataFeed encompasses all data loading related settings

    Args:
        dataset (object): a `Dataset` instance
        fields (list): list of data fields needed
        image_shape (list): list of image dims (C, MAX_DIM, MIN_DIM)
        sample_transforms (list): list of sample transformations to use
        batch_transforms (list): list of batch transformations to use
        batch_size (int): number of images per device
        shuffle (bool): if samples should be shuffled
        drop_last (bool): drop last batch if size is uneven
        num_workers (int): number of workers processes (or threads)
    """
    __category__ = 'data'

    def __init__(self,
                 dataset,
                 fields,
                 image_shape,
                 sample_transforms=None,
                 batch_transforms=None,
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 with_background=True,
                 num_workers=2,
                 bufsize=10,
                 use_process=False,
                 use_padded_im_info=False):
        super(DataFeed, self).__init__()
        self.fields = fields
        self.image_shape = image_shape
        self.sample_transforms = sample_transforms
        self.batch_transforms = batch_transforms
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.samples = samples
        self.drop_last = drop_last
        self.with_background = with_background
        self.num_workers = num_workers
        self.bufsize = bufsize
        self.use_process = use_process
        self.dataset = dataset
        self.use_padded_im_info = use_padded_im_info
        if isinstance(dataset, dict):
            self.dataset = DataSet(**dataset)


# for custom (i.e., Non-preset) datasets
@register
class TrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset,
                 fields,
                 image_shape,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=True,
                 samples=-1,
                 drop_last=False,
                 with_background=True,
                 num_workers=2,
                 bufsize=10,
                 use_process=True):
        super(TrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers,
            bufsize=bufsize,
            use_process=use_process, )


@register
class EvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset,
                 fields,
                 image_shape,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 with_background=True,
                 num_workers=2):
        super(EvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers)


@register
class TestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset,
                 fields,
                 image_shape,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 with_background=True,
                 num_workers=2):
        super(TestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers)


415
# yapf: disable
416 417 418 419 420 421 422 423 424 425
@register
class FasterRCNNTrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet().__dict__,
                 fields=[
                     'image', 'im_info', 'im_id', 'gt_box', 'gt_label',
                     'is_crowd'
                 ],
426
                 image_shape=[3, 800, 1333],
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     RandomFlipImage(prob=0.5),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     ResizeImage(target_size=800, max_size=1333, interp=1),
                     Permute(to_bgr=False)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=True,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_process=False):
        # XXX this should be handled by the data loader, since `fields` is
        # given, just collect them
        sample_transforms.append(ArrangeRCNN())
        super(FasterRCNNTrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_process=use_process)
        # XXX these modes should be unified
        self.mode = 'TRAIN'


@register
class FasterRCNNEvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet(COCO_VAL_ANNOTATION,
                                     COCO_VAL_IMAGE_DIR).__dict__,
                 fields=['image', 'im_info', 'im_id', 'im_shape'],
471
                 image_shape=[3, 800, 1333],
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     ResizeImage(target_size=800, max_size=1333, interp=1),
                     Permute(to_bgr=False)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_padded_im_info=True):
        sample_transforms.append(ArrangeTestRCNN())
        super(FasterRCNNEvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_padded_im_info=use_padded_im_info)
        self.mode = 'VAL'


@register
class FasterRCNNTestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=SimpleDataSet(COCO_VAL_ANNOTATION,
                                       COCO_VAL_IMAGE_DIR).__dict__,
                 fields=['image', 'im_info', 'im_id', 'im_shape'],
512
                 image_shape=[3, 800, 1333],
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     Permute(to_bgr=False)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_padded_im_info=True):
        sample_transforms.append(ArrangeTestRCNN())
        if isinstance(dataset, dict):
            dataset = SimpleDataSet(**dataset)
        super(FasterRCNNTestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_padded_im_info=use_padded_im_info)
        self.mode = 'TEST'


# XXX currently use two presets, in the future, these should be combined into a
# single `RCNNTrainFeed`. Mask (and keypoint) should be processed
# automatically if `gt_mask` (or `gt_keypoints`) is in the required fields
@register
class MaskRCNNTrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet().__dict__,
                 fields=[
                     'image', 'im_info', 'im_id', 'gt_box', 'gt_label',
                     'is_crowd', 'gt_mask'
                 ],
559
                 image_shape=[3, 800, 1333],
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     RandomFlipImage(prob=0.5, is_mask_flip=True),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     ResizeImage(target_size=800,
                                 max_size=1333,
                                 interp=1,
                                 use_cv2=True),
                     Permute(to_bgr=False, channel_first=True)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=True,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_process=False,
                 use_padded_im_info=False):
        sample_transforms.append(ArrangeRCNN(is_mask=True))
        super(MaskRCNNTrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_process=use_process)
        self.mode = 'TRAIN'


@register
class MaskRCNNEvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet(COCO_VAL_ANNOTATION,
                                     COCO_VAL_IMAGE_DIR).__dict__,
                 fields=['image', 'im_info', 'im_id', 'im_shape'],
605
                 image_shape=[3, 800, 1333],
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     ResizeImage(target_size=800,
                                 max_size=1333,
                                 interp=1,
                                 use_cv2=True),
                     Permute(to_bgr=False, channel_first=True)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_process=False,
                 use_padded_im_info=True):
        sample_transforms.append(ArrangeTestRCNN())
        super(MaskRCNNEvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_process=use_process,
            use_padded_im_info=use_padded_im_info)
        self.mode = 'VAL'


@register
class MaskRCNNTestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=SimpleDataSet(COCO_VAL_ANNOTATION,
                                       COCO_VAL_IMAGE_DIR).__dict__,
                 fields=['image', 'im_info', 'im_id', 'im_shape'],
651
                 image_shape=[3, 800, 1333],
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     NormalizeImage(
                         mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225],
                         is_scale=True,
                         is_channel_first=False),
                     Permute(to_bgr=False, channel_first=True)
                 ],
                 batch_transforms=[PadBatch()],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=2,
                 use_process=False,
                 use_padded_im_info=True):
        sample_transforms.append(ArrangeTestRCNN())
        if isinstance(dataset, dict):
            dataset = SimpleDataSet(**dataset)
        super(MaskRCNNTestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
            use_process=use_process,
            use_padded_im_info=use_padded_im_info)
        self.mode = 'TEST'


@register
class SSDTrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=VocDataSet().__dict__,
694
                 fields=['image', 'gt_box', 'gt_label'],
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
                 image_shape=[3, 300, 300],
                 sample_transforms=[
                     DecodeImage(to_rgb=True, with_mixup=False),
                     NormalizeBox(),
                     RandomDistort(brightness_lower=0.875,
                                   brightness_upper=1.125,
                                   is_order=True),
                     ExpandImage(max_ratio=4, prob=0.5),
                     CropImage(batch_sampler=[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]],
                               satisfy_all=False, avoid_no_bbox=False),
                     ResizeImage(target_size=300, use_cv2=False, interp=1),
                     RandomFlipImage(is_normalized=True),
                     Permute(),
                     NormalizeImage(mean=[127.5, 127.5, 127.5],
                                    std=[127.502231, 127.502231, 127.502231],
                                    is_scale=False)
                 ],
                 batch_transforms=[],
                 batch_size=32,
                 shuffle=True,
                 samples=-1,
                 drop_last=True,
                 num_workers=8,
                 bufsize=10,
                 use_process=True):
        sample_transforms.append(ArrangeSSD())
        super(SSDTrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
738
            bufsize=bufsize,
739 740 741 742 743 744 745 746 747 748 749
            use_process=use_process)
        self.mode = 'TRAIN'


@register
class SSDEvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(
            self,
            dataset=VocDataSet(VOC_VAL_ANNOTATION).__dict__,
750 751
            fields=['image', 'im_shape', 'im_id', 'gt_box',
                         'gt_label', 'is_difficult'],
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
            image_shape=[3, 300, 300],
            sample_transforms=[
                DecodeImage(to_rgb=True, with_mixup=False),
                NormalizeBox(),
                ResizeImage(target_size=300, use_cv2=False, interp=1),
                Permute(),
                NormalizeImage(
                    mean=[127.5, 127.5, 127.5],
                    std=[127.502231, 127.502231, 127.502231],
                    is_scale=False)
            ],
            batch_transforms=[],
            batch_size=64,
            shuffle=False,
            samples=-1,
            drop_last=True,
            num_workers=8,
            bufsize=10,
            use_process=False):
771
        sample_transforms.append(ArrangeEvalSSD())
772 773 774 775 776 777 778 779 780 781 782
        super(SSDEvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            num_workers=num_workers,
783
            bufsize=bufsize,
784 785 786 787 788 789 790 791 792 793
            use_process=use_process)
        self.mode = 'VAL'


@register
class SSDTestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=SimpleDataSet(VOC_TEST_ANNOTATION).__dict__,
794
                 fields=['image', 'im_id', 'im_shape'],
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
                 image_shape=[3, 300, 300],
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     ResizeImage(target_size=300, use_cv2=False, interp=1),
                     Permute(),
                     NormalizeImage(
                         mean=[127.5, 127.5, 127.5],
                         std=[127.502231, 127.502231, 127.502231],
                         is_scale=False)
                 ],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 num_workers=8,
                 bufsize=10,
                 use_process=False):
        sample_transforms.append(ArrangeTestSSD())
        if isinstance(dataset, dict):
            dataset = SimpleDataSet(**dataset)
        super(SSDTestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
826 827 828
            num_workers=num_workers,
            bufsize=bufsize,
            use_process=use_process)
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
        self.mode = 'TEST'


@register
class YoloTrainFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet().__dict__,
                 fields=['image', 'gt_box', 'gt_label', 'gt_score'],
                 image_shape=[3, 608, 608],
                 sample_transforms=[
                     DecodeImage(to_rgb=True, with_mixup=True),
                     MixupImage(alpha=1.5, beta=1.5),
                     NormalizeBox(),
                     RandomDistort(),
                     ExpandImage(max_ratio=4., prob=.5,
                                 mean=[123.675, 116.28, 103.53]),
                     CropImage([[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0],
                                [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]),
                     RandomInterpImage(target_size=608),
                     RandomFlipImage(is_normalized=True),
                     NormalizeImage(
                         mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225],
                         is_scale=True,
                         is_channel_first=False),
                     Permute(to_bgr=False),
                 ],
                 batch_transforms=[
                     RandomShape(sizes=[
                         320, 352, 384, 416, 448, 480, 512, 544, 576, 608
                     ])
                 ],
                 batch_size=8,
                 shuffle=True,
                 samples=-1,
                 drop_last=True,
                 with_background=False,
                 num_workers=8,
                 bufsize=128,
                 use_process=True,
                 num_max_boxes=50,
                 mixup_epoch=250):
        sample_transforms.append(ArrangeYOLO())
        super(YoloTrainFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers,
            bufsize=bufsize,
            use_process=use_process)
        self.num_max_boxes = num_max_boxes
        self.mixup_epoch = mixup_epoch
        self.mode = 'TRAIN'


@register
class YoloEvalFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=CocoDataSet(COCO_VAL_ANNOTATION,
                                     COCO_VAL_IMAGE_DIR).__dict__,
905
                 fields=['image', 'im_size', 'im_id', 'gt_box',
906
                         'gt_label', 'is_difficult'],
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
                 image_shape=[3, 608, 608],
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     ResizeImage(target_size=608, interp=2),
                     NormalizeImage(
                         mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225],
                         is_scale=True,
                         is_channel_first=False),
                     Permute(to_bgr=False),
                 ],
                 batch_transforms=[],
                 batch_size=8,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 with_background=False,
                 num_workers=8,
                 num_max_boxes=50,
                 use_process=False):
927
        sample_transforms.append(ArrangeEvalYOLO())
928 929 930 931 932 933 934 935 936 937 938 939 940
        super(YoloEvalFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers,
            use_process=use_process)
941
        self.num_max_boxes = num_max_boxes
942 943 944 945 946 947 948 949 950 951 952
        self.mode = 'VAL'
        self.bufsize = 128


@register
class YoloTestFeed(DataFeed):
    __doc__ = DataFeed.__doc__

    def __init__(self,
                 dataset=SimpleDataSet(COCO_VAL_ANNOTATION,
                                       COCO_VAL_IMAGE_DIR).__dict__,
953
                 fields=['image', 'im_size', 'im_id'],
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
                 image_shape=[3, 608, 608],
                 sample_transforms=[
                     DecodeImage(to_rgb=True),
                     ResizeImage(target_size=608, interp=2),
                     NormalizeImage(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225],
                                    is_scale=True,
                                    is_channel_first=False),
                     Permute(to_bgr=False),
                 ],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 samples=-1,
                 drop_last=False,
                 with_background=False,
                 num_workers=8,
                 num_max_boxes=50,
                 use_process=False):
        sample_transforms.append(ArrangeTestYOLO())
        if isinstance(dataset, dict):
            dataset = SimpleDataSet(**dataset)
        super(YoloTestFeed, self).__init__(
            dataset,
            fields,
            image_shape,
            sample_transforms,
            batch_transforms,
            batch_size=batch_size,
            shuffle=shuffle,
            samples=samples,
            drop_last=drop_last,
            with_background=with_background,
            num_workers=num_workers,
            use_process=use_process)
        self.mode = 'TEST'
        self.bufsize = 128
991
# yapf: enable