learning_rate_scheduler.py 13.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24
from __future__ import print_function

25 26 27 28
from . import control_flow
from . import nn
from . import ops
from . import tensor
29
from ..initializer import init_on_cpu
30
from ..framework import default_main_program, Parameter, unique_name, name_scope
S
shippingwang 已提交
31
import math
Q
Qiao Longfei 已提交
32

33 34
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
S
shippingwang 已提交
35 36
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'append_LARS',
    'cosine_decay'
37
]
Q
Qiao Longfei 已提交
38 39


40
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
41
    # the first global step is zero in learning rate decay
42
    global_step = nn.autoincreased_step_counter(
43
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
44
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
45 46 47
    return global_step


48
def noam_decay(d_model, warmup_steps):
Y
yuyang18 已提交
49 50 51 52 53 54 55 56 57 58
    """
    Noam decay method. The numpy implementation of noam decay as follows.

    >>> import numpy as np
    >>> lr_value = np.power(d_model, -0.5) * np.min([
    >>>                         np.power(current_steps, -0.5),
    >>>                         np.power(warmup_steps, -1.5) * current_steps])

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
59 60 61

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
62

63 64 65 66 67
        warmup_steps(Variable): A super parameter.

    Returns:
        The decayed learning rate.
    """
68 69
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter(1)
F
fengjiayi 已提交
70

71 72 73
        a = global_step**-0.5
        b = (warmup_steps**-1.5) * global_step
        lr_value = (d_model**-0.5) * nn.elementwise_min(a, b)
74

75
    return lr_value
76 77


Y
Yu Yang 已提交
78
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
79
    """
80
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
81

82 83
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
84 85 86 87 88 89
    'decay_rate' every 'decay_steps' steps.

    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
90 91

    Args:
F
fengjiayi 已提交
92 93 94 95 96
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
97 98

    Returns:
F
fengjiayi 已提交
99
        Variable: The decayed learning rate
F
fengjiayi 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)

Q
Qiao Longfei 已提交
113
    """
114 115
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
116

117 118 119 120
        div_res = global_step / decay_steps
        if staircase:
            div_res = ops.floor(div_res)
        decayed_lr = learning_rate * (decay_rate**div_res)
121

122
        return decayed_lr
Q
Qiao Longfei 已提交
123 124


Y
Yu Yang 已提交
125
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
126 127
    """Applies natural exponential decay to the initial learning rate.

Y
Yu Yang 已提交
128 129 130 131 132
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))

Q
Qiao Longfei 已提交
133 134 135 136 137 138 139 140 141 142
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
143 144
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
145

146 147 148 149
        div_res = global_step / decay_steps
        if staircase:
            div_res = ops.floor(div_res)
        decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
150

151
        return decayed_lr
Q
Qiao Longfei 已提交
152 153


Y
Yu Yang 已提交
154
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
155 156
    """
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
157

158 159
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
160
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
161

F
fengjiayi 已提交
162
    >>> if staircase == True:
Y
Yu Yang 已提交
163 164 165 166
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
167
    Args:
F
fengjiayi 已提交
168 169 170 171 172
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
173 174

    Returns:
F
fengjiayi 已提交
175
        Variable: The decayed learning rate
F
fengjiayi 已提交
176 177 178 179 180 181 182 183 184 185 186 187

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.inverse_time_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)
Q
Qiao Longfei 已提交
188
    """
189 190
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
191

192 193 194
        div_res = global_step / decay_steps
        if staircase:
            div_res = ops.floor(div_res)
195

196
        decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
197

198
        return decayed_lr
199 200 201 202 203 204 205


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
206 207 208
    """
    Applies polynomial decay to the initial learning rate.

Q
qiaolongfei 已提交
209
    .. code-block:: python
Q
qiaolongfei 已提交
210 211 212 213 214 215 216

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
217 218

    Args:
Q
qiaolongfei 已提交
219
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
220
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
221
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
222 223 224
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
225 226

    Returns:
Q
update  
qiaolongfei 已提交
227
        Variable: The decayed learning rate
228
    """
229 230
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
231

232 233 234 235 236 237
        if cycle:
            div_res = ops.ceil(global_step / decay_steps)
            zero_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=0.0)
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
238

239 240 241 242 243 244 245 246
            with control_flow.Switch() as switch:
                with switch.case(global_step == zero_var):
                    tensor.assign(input=one_var, output=div_res)
            decay_steps = decay_steps * div_res
        else:
            decay_steps_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=float(decay_steps))
            global_step = nn.elementwise_min(x=global_step, y=decay_steps_var)
247

248 249 250
        decayed_lr = (learning_rate - end_learning_rate) * \
            ((1 - global_step / decay_steps) ** power) + end_learning_rate
        return decayed_lr
251 252


Y
Yu Yang 已提交
253
def piecewise_decay(boundaries, values):
254 255
    """Applies piecewise decay to the initial learning rate.

X
Xin Pan 已提交
256 257 258 259 260 261 262 263 264 265 266 267
      The algorithm can be described as the code below.

      .. code-block:: python

        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if step < 10000:
            learning_rate = 1.0
        elif 10000 <= step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1
X
Xin Pan 已提交
268 269 270 271 272 273 274 275
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
Xin Pan 已提交
276

277
    """
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    with default_main_program()._lr_schedule_guard():
        if len(values) - len(boundaries) != 1:
            raise ValueError("len(values) - len(boundaries) should be 1")

        global_step = _decay_step_counter()

        lr = tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate")

        with control_flow.Switch() as switch:
            for i in range(len(boundaries)):
                boundary_val = tensor.fill_constant(
294 295
                    shape=[1],
                    dtype='float32',
296 297 298 299 300 301 302 303 304 305 306 307
                    value=float(boundaries[i]),
                    force_cpu=True)
                value_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=float(values[i]))
                with switch.case(global_step < boundary_val):
                    tensor.assign(value_var, lr)
            last_value_var = tensor.fill_constant(
                shape=[1],
                dtype='float32',
                value=float(values[len(values) - 1]))
            with switch.default():
                tensor.assign(last_value_var, lr)
308

309
    return lr
W
Wu Yi 已提交
310 311


S
shippingwang 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
def cosine_decay(learning_rate, step_each_epoch, epochs):
    """
    Applies cosine decay to the learning rate.

    when training a model, it is oftem recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
    following cosine decay strategy.
    
    Args:
        learning_rate(Variable|float): The initial learning rate.
        step_each_epoch(int): the number of steps in an epoch.
        epochs(int): the number of epochs.

     Returns:
        Variable: The decayed learning rate.

     Examples:

    ..code-block:: python

  	base_lr = 0.1
	lr = fluid.layers.cosine_decay(
	learning_rate = base_lr, step_each_epoch=10000, epochs=120)
    """
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()

        cur_epoch = ops.floor(global_step / step_each_epoch)
        decayed_lr = learning_rate * 0.5 * (
            ops.cos(cur_epoch * math.pi / epochs) + 1)
        return decayed_lr


W
Wu Yi 已提交
345
def append_LARS(params_grads, learning_rate, weight_decay):
T
Tink_Y 已提交
346 347 348
    """
    Applies LARS (LAYER-WISE ADAPTIVE RATE SCALING) to learning rate for
    each layer.
W
Wu Yi 已提交
349 350 351 352 353 354 355 356

    Args:
        learning_rate: A learning rate Variable. This
          is the global learning rate for LARS.
        weight_decay: A Python `float` number.

    Returns:
        The decayed learning rate
T
Tink_Y 已提交
357 358
    Examples:
        .. code-block:: python
M
minqiyang 已提交
359

T
Tink_Y 已提交
360 361
            learning_rate *= local_gw_ratio * sqrt(sumsq(param))
                        / (sqrt(sumsq(gradient))+ weight_decay * sqrt(sumsq(param)))
W
Wu Yi 已提交
362 363 364 365 366 367 368 369 370
    """

    def _balanced_weight(param_norm, grad_norm):
        if weight_decay == 1.0:
            return grad_norm + param_norm
        else:
            return grad_norm + weight_decay * param_norm

    for param, grad in params_grads:
371 372 373 374 375 376 377 378 379 380 381 382 383
        with param.block.program.optimized_guard(
            [param, grad]), name_scope("optimizer"):
            param_lr = param.optimize_attr['learning_rate']
            param_norm = ops.sqrt(nn.reduce_sum(input=ops.square(param)))
            grad_norm = ops.sqrt(nn.reduce_sum(input=ops.square(grad)))
            if type(param_lr) == float and param_lr == 1.0:
                decayed_lr = learning_rate * param_norm \
                    / _balanced_weight(param_norm, grad_norm)
            else:
                decayed_lr = learning_rate * param_lr * param_norm \
                    / _balanced_weight(param_norm, grad_norm)
            # set back param local learning rate
            param.optimize_attr['learning_rate'] = decayed_lr