learning_rate_scheduler.py 8.4 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19
import control_flow
import nn
import ops
import tensor
from ..initializer import init_on_cpu
Q
Qiao Longfei 已提交
20

21 22
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
23
    'polynomial_decay', 'piecewise_decay', 'noam_decay'
24
]
Q
Qiao Longfei 已提交
25 26 27 28 29 30 31 32 33 34
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""


35
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
36
    # the first global step is zero in learning rate decay
37
    global_step = nn.autoincreased_step_counter(
38
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
39
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
40 41 42
    return global_step


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
def noam_decay(d_model, warmup_steps):
    """Apply decay to learning rate.
    ```python
    lr_value = np.power(d_model, -0.5) * np.min([
            np.power(current_steps, -0.5),
            np.power(warmup_steps, -1.5) * current_steps
        ])
    ```

    Args:
        d_model(Variable): The dimensionality of input and output of model.
            Reference: attention is all you need
                https://arxiv.org/pdf/1706.03762.pdf
        warmup_steps(Variable): A super parameter.

    Returns:
        The decayed learning rate.
    """
    global_step = _decay_step_counter(1)
    with init_on_cpu():
        a = global_step**-0.5
        b = (warmup_steps**-1.5) * global_step
        lr_value = (d_model**-0.5) * ops.elementwise_min(a, b)

    return lr_value


Y
Yu Yang 已提交
70
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    """Applies exponential decay to the learning rate.

    ```python
    decayed_learning_rate = learning_rate *
            decay_rate ^ (global_step / decay_steps)
    ```
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
Y
Yu Yang 已提交
87
    global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
88

89 90 91 92
    with init_on_cpu():
        # update learning_rate
        div_res = global_step / decay_steps
        if staircase:
93
            div_res = ops.floor(div_res)
94 95 96
        decayed_lr = learning_rate * (decay_rate**div_res)

    return decayed_lr
Q
Qiao Longfei 已提交
97 98


Y
Yu Yang 已提交
99
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
100 101
    """Applies natural exponential decay to the initial learning rate.

Y
Yu Yang 已提交
102 103 104 105 106
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))

Q
Qiao Longfei 已提交
107 108 109 110 111 112 113 114 115 116
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
Y
Yu Yang 已提交
117
    global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
118

119 120 121
    with init_on_cpu():
        div_res = global_step / decay_steps
        if staircase:
122 123
            div_res = ops.floor(div_res)
        decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
124 125

    return decayed_lr
Q
Qiao Longfei 已提交
126 127


Y
Yu Yang 已提交
128
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
129 130
    """Applies inverse time decay to the initial learning rate.

Y
Yu Yang 已提交
131 132 133 134 135
    >>> if staircase:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
136 137
    Args:
        learning_rate: A scalar float32 value or a Variable. This
Y
Yu Yang 已提交
138
          will be the initial learning rate during training.
Q
Qiao Longfei 已提交
139 140 141 142 143 144 145
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
Y
Yu Yang 已提交
146
    global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
147

148 149 150
    with init_on_cpu():
        div_res = global_step / decay_steps
        if staircase:
151
            div_res = ops.floor(div_res)
152 153

        decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
154

155
    return decayed_lr
156 157 158 159 160 161 162 163 164


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
    """Applies polynomial decay to the initial learning rate.

Y
Yu Yang 已提交
165 166 167 168 169 170 171
    >>> if cycle:
    >>>     decay_steps = decay_steps * ceil(global_step / decay_steps)
    >>> else:
    >>>     global_step = min(global_step, decay_steps)
    >>> decayed_learning_rate = (learning_rate - end_learning_rate) *
    >>>                   (1 - global_step / decay_steps) ^ power +
    >>>                   end_learning_rate
172 173 174 175 176 177 178 179 180 181 182
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        end_learning_rate: A Python `float` number.
        power: A Python `float` number
        cycle: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
Y
Yu Yang 已提交
183
    global_step = _decay_step_counter()
184

185 186
    with init_on_cpu():
        if cycle:
187 188
            div_res = ops.ceil(global_step / decay_steps)
            zero_var = tensor.fill_constant(
189
                shape=[1], dtype='float32', value=0.0)
190
            one_var = tensor.fill_constant(
191 192
                shape=[1], dtype='float32', value=1.0)

193
            with control_flow.Switch() as switch:
194
                with switch.case(global_step == zero_var):
195
                    tensor.assign(input=one_var, output=div_res)
196 197
            decay_steps = decay_steps * div_res
        else:
198
            decay_steps_var = tensor.fill_constant(
199
                shape=[1], dtype='float32', value=float(decay_steps))
200
            global_step = ops.elementwise_min(x=global_step, y=decay_steps_var)
201 202 203 204

        decayed_lr = (learning_rate - end_learning_rate) * \
                     ((1 - global_step / decay_steps) ** power) + end_learning_rate
    return decayed_lr
205 206


Y
Yu Yang 已提交
207
def piecewise_decay(boundaries, values):
208 209
    """Applies piecewise decay to the initial learning rate.

Y
Yu Yang 已提交
210 211 212 213 214 215 216 217 218
    >>> boundaries = [10000, 20000]
    >>> values = [1.0, 0.5, 0.1]
    >>>
    >>> if step < 10000:
    >>>     learning_rate = 1.0
    >>> elif 10000 <= step < 20000:
    >>>     learning_rate = 0.5
    >>> else:
    >>>     learning_rate = 0.1
219 220 221 222 223
    """

    if len(values) - len(boundaries) != 1:
        raise ValueError("len(values) - len(boundaries) should be 1")

Y
Yu Yang 已提交
224
    global_step = _decay_step_counter()
225

226
    with init_on_cpu():
227
        lr = tensor.create_global_var(
228 229 230 231 232 233
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate")

234
        with control_flow.Switch() as switch:
235
            for i in range(len(boundaries)):
236
                boundary_val = tensor.fill_constant(
237
                    shape=[1], dtype='float32', value=float(boundaries[i]))
238
                value_var = tensor.fill_constant(
239
                    shape=[1], dtype='float32', value=float(values[i]))
240
                with switch.case(global_step < boundary_val):
241 242
                    tensor.assign(value_var, lr)
            last_value_var = tensor.fill_constant(
243 244 245 246
                shape=[1],
                dtype='float32',
                value=float(values[len(values) - 1]))
            with switch.default():
247
                tensor.assign(last_value_var, lr)
248 249

    return lr