learning_rate_scheduler.py 12.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24
from __future__ import print_function

25 26 27 28
from . import control_flow
from . import nn
from . import ops
from . import tensor
29
from ..initializer import init_on_cpu
30
from ..framework import default_main_program, Parameter, unique_name, name_scope
Q
Qiao Longfei 已提交
31

32 33
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
W
Wu Yi 已提交
34
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'append_LARS'
35
]
Q
Qiao Longfei 已提交
36 37


38
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
39
    # the first global step is zero in learning rate decay
40
    global_step = nn.autoincreased_step_counter(
41
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
42
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
43 44 45
    return global_step


46
def noam_decay(d_model, warmup_steps):
Y
yuyang18 已提交
47 48 49 50 51 52 53 54 55 56
    """
    Noam decay method. The numpy implementation of noam decay as follows.

    >>> import numpy as np
    >>> lr_value = np.power(d_model, -0.5) * np.min([
    >>>                         np.power(current_steps, -0.5),
    >>>                         np.power(warmup_steps, -1.5) * current_steps])

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
57 58 59

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
60

61 62 63 64 65
        warmup_steps(Variable): A super parameter.

    Returns:
        The decayed learning rate.
    """
66 67
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter(1)
F
fengjiayi 已提交
68

69 70 71
        a = global_step**-0.5
        b = (warmup_steps**-1.5) * global_step
        lr_value = (d_model**-0.5) * nn.elementwise_min(a, b)
72

73
    return lr_value
74 75


Y
Yu Yang 已提交
76
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
77
    """
78
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
79

80 81
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
82 83 84 85 86 87
    'decay_rate' every 'decay_steps' steps.

    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
88 89

    Args:
F
fengjiayi 已提交
90 91 92 93 94
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
95 96

    Returns:
F
fengjiayi 已提交
97
        Variable: The decayed learning rate
F
fengjiayi 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)

Q
Qiao Longfei 已提交
111
    """
112 113
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
114

115 116 117 118
        div_res = global_step / decay_steps
        if staircase:
            div_res = ops.floor(div_res)
        decayed_lr = learning_rate * (decay_rate**div_res)
119

120
        return decayed_lr
Q
Qiao Longfei 已提交
121 122


Y
Yu Yang 已提交
123
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
124 125
    """Applies natural exponential decay to the initial learning rate.

Y
Yu Yang 已提交
126 127 128 129 130
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))

Q
Qiao Longfei 已提交
131 132 133 134 135 136 137 138 139 140
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
141 142
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
143

144 145 146 147
        div_res = global_step / decay_steps
        if staircase:
            div_res = ops.floor(div_res)
        decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
148

149
        return decayed_lr
Q
Qiao Longfei 已提交
150 151


Y
Yu Yang 已提交
152
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
153 154
    """
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
155

156 157
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
158
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
159

F
fengjiayi 已提交
160
    >>> if staircase == True:
Y
Yu Yang 已提交
161 162 163 164
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
165
    Args:
F
fengjiayi 已提交
166 167 168 169 170
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
171 172

    Returns:
F
fengjiayi 已提交
173
        Variable: The decayed learning rate
F
fengjiayi 已提交
174 175 176 177 178 179 180 181 182 183 184 185

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.inverse_time_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)
Q
Qiao Longfei 已提交
186
    """
187 188
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
189

190 191 192
        div_res = global_step / decay_steps
        if staircase:
            div_res = ops.floor(div_res)
193

194
        decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
195

196
        return decayed_lr
197 198 199 200 201 202 203


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
204 205 206
    """
    Applies polynomial decay to the initial learning rate.

Q
qiaolongfei 已提交
207
    .. code-block:: python
Q
qiaolongfei 已提交
208 209 210 211 212 213 214

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
215 216

    Args:
Q
qiaolongfei 已提交
217
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
218
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
219
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
220 221 222
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
223 224

    Returns:
Q
update  
qiaolongfei 已提交
225
        Variable: The decayed learning rate
226
    """
227 228
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
229

230 231 232 233 234 235
        if cycle:
            div_res = ops.ceil(global_step / decay_steps)
            zero_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=0.0)
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
236

237 238 239 240 241 242 243 244
            with control_flow.Switch() as switch:
                with switch.case(global_step == zero_var):
                    tensor.assign(input=one_var, output=div_res)
            decay_steps = decay_steps * div_res
        else:
            decay_steps_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=float(decay_steps))
            global_step = nn.elementwise_min(x=global_step, y=decay_steps_var)
245

246 247 248
        decayed_lr = (learning_rate - end_learning_rate) * \
            ((1 - global_step / decay_steps) ** power) + end_learning_rate
        return decayed_lr
249 250


Y
Yu Yang 已提交
251
def piecewise_decay(boundaries, values):
252 253
    """Applies piecewise decay to the initial learning rate.

X
Xin Pan 已提交
254 255 256 257 258 259 260 261 262 263 264 265
      The algorithm can be described as the code below.

      .. code-block:: python

        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if step < 10000:
            learning_rate = 1.0
        elif 10000 <= step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1
X
Xin Pan 已提交
266 267 268 269 270 271 272 273
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
Xin Pan 已提交
274

275
    """
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    with default_main_program()._lr_schedule_guard():
        if len(values) - len(boundaries) != 1:
            raise ValueError("len(values) - len(boundaries) should be 1")

        global_step = _decay_step_counter()

        lr = tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate")

        with control_flow.Switch() as switch:
            for i in range(len(boundaries)):
                boundary_val = tensor.fill_constant(
292 293
                    shape=[1],
                    dtype='float32',
294 295 296 297 298 299 300 301 302 303 304 305
                    value=float(boundaries[i]),
                    force_cpu=True)
                value_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=float(values[i]))
                with switch.case(global_step < boundary_val):
                    tensor.assign(value_var, lr)
            last_value_var = tensor.fill_constant(
                shape=[1],
                dtype='float32',
                value=float(values[len(values) - 1]))
            with switch.default():
                tensor.assign(last_value_var, lr)
306

307
    return lr
W
Wu Yi 已提交
308 309 310


def append_LARS(params_grads, learning_rate, weight_decay):
T
Tink_Y 已提交
311 312 313
    """
    Applies LARS (LAYER-WISE ADAPTIVE RATE SCALING) to learning rate for
    each layer.
W
Wu Yi 已提交
314 315 316 317 318 319 320 321

    Args:
        learning_rate: A learning rate Variable. This
          is the global learning rate for LARS.
        weight_decay: A Python `float` number.

    Returns:
        The decayed learning rate
T
Tink_Y 已提交
322 323
    Examples:
        .. code-block:: python
M
minqiyang 已提交
324

T
Tink_Y 已提交
325 326
            learning_rate *= local_gw_ratio * sqrt(sumsq(param))
                        / (sqrt(sumsq(gradient))+ weight_decay * sqrt(sumsq(param)))
W
Wu Yi 已提交
327 328 329 330 331 332 333 334 335
    """

    def _balanced_weight(param_norm, grad_norm):
        if weight_decay == 1.0:
            return grad_norm + param_norm
        else:
            return grad_norm + weight_decay * param_norm

    for param, grad in params_grads:
336 337 338 339 340 341 342 343 344 345 346 347 348
        with param.block.program.optimized_guard(
            [param, grad]), name_scope("optimizer"):
            param_lr = param.optimize_attr['learning_rate']
            param_norm = ops.sqrt(nn.reduce_sum(input=ops.square(param)))
            grad_norm = ops.sqrt(nn.reduce_sum(input=ops.square(grad)))
            if type(param_lr) == float and param_lr == 1.0:
                decayed_lr = learning_rate * param_norm \
                    / _balanced_weight(param_norm, grad_norm)
            else:
                decayed_lr = learning_rate * param_lr * param_norm \
                    / _balanced_weight(param_norm, grad_norm)
            # set back param local learning rate
            param.optimize_attr['learning_rate'] = decayed_lr