test_calibration.py 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import os
import numpy as np
import time
import sys
import random
import paddle
import paddle.fluid as fluid
import functools
import contextlib
24
from paddle.dataset.common import download
25 26 27
from PIL import Image, ImageEnhance
import math
sys.path.append('..')
28
import int8_inference.utility as int8_utility
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

random.seed(0)
np.random.seed(0)

DATA_DIM = 224

THREAD = 1
BUF_SIZE = 102400

DATA_DIR = 'data/ILSVRC2012'

img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))


44
# TODO(guomingz): Remove duplicated code from resize_short, crop_image, process_image, _reader_creator
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


def process_image(sample, mode, color_jitter, rotate):
    img_path = sample[0]

    img = Image.open(img_path)

    img = resize_short(img, target_size=256)
    img = crop_image(img, target_size=DATA_DIM, center=True)

    if img.mode != 'RGB':
        img = img.convert('RGB')

    img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
    img -= img_mean
    img /= img_std

    return img, sample[1]


def _reader_creator(file_list,
                    mode,
                    shuffle=False,
                    color_jitter=False,
                    rotate=False,
                    data_dir=DATA_DIR):
    def reader():
        with open(file_list) as flist:
            full_lines = [line.strip() for line in flist]
            if shuffle:
                np.random.shuffle(full_lines)

            lines = full_lines

            for line in lines:
                img_path, label = line.split()
                img_path = os.path.join(data_dir, img_path)
                if not os.path.exists(img_path):
                    continue
                yield img_path, int(label)

    mapper = functools.partial(
        process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)

    return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)


def val(data_dir=DATA_DIR):
    file_list = os.path.join(data_dir, 'val_list.txt')
    return _reader_creator(file_list, 'val', shuffle=False, data_dir=data_dir)


118
class TestCalibrationForResnet50(unittest.TestCase):
119
    def setUp(self):
120 121 122 123
        self.int8_download = 'int8/download'
        self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
                                               self.int8_download)

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        data_urls = []
        data_md5s = []
        self.data_cache_folder = ''
        if os.environ.get('DATASET') == 'full':
            data_urls.append(
                'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
            )
            data_md5s.append('60f6525b0e1d127f345641d75d41f0a8')
            data_urls.append(
                'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
            )
            data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5')
            self.data_cache_folder = self.download_data(data_urls, data_md5s,
                                                        "full_data", False)
        else:
            data_urls.append(
                'http://paddle-inference-dist.cdn.bcebos.com/int8/calibration_test_data.tar.gz'
            )
            data_md5s.append('1b6c1c434172cca1bf9ba1e4d7a3157d')
            self.data_cache_folder = self.download_data(data_urls, data_md5s,
                                                        "small_data", False)
145 146 147 148

        # reader/decorator.py requires the relative path to the data folder
        cmd = 'rm -rf {0} && ln -s {1} {0}'.format("data",
                                                   self.data_cache_folder)
149 150
        os.system(cmd)

151 152 153 154
        self.batch_size = 1
        self.sample_iterations = 50
        self.infer_iterations = 50000 if os.environ.get(
            'DATASET') == 'full' else 50
155

156 157 158 159 160 161
    def cache_unzipping(self, target_folder, zip_path):
        if not os.path.exists(target_folder):
            cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
                                                          zip_path)
            os.system(cmd)

162
    def download_data(self, data_urls, data_md5s, folder_name, is_model=True):
163
        data_cache_folder = os.path.join(self.cache_folder, folder_name)
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        zip_path = ''
        if os.environ.get('DATASET') == 'full':
            file_names = []
            for i in range(0, len(data_urls)):
                download(data_urls[i], self.int8_download, data_md5s[i])
                file_names.append(data_urls[i].split('/')[-1])

            zip_path = os.path.join(self.cache_folder,
                                    'full_imagenet_val.tar.gz')
            if not os.path.exists(zip_path):
                cat_command = 'cat'
                for file_name in file_names:
                    cat_command += ' ' + os.path.join(self.cache_folder,
                                                      file_name)
                cat_command += ' > ' + zip_path
                os.system(cat_command)

        if os.environ.get('DATASET') != 'full' or is_model:
            download(data_urls[0], self.int8_download, data_md5s[0])
            file_name = data_urls[0].split('/')[-1]
            zip_path = os.path.join(self.cache_folder, file_name)

        print('Data is downloaded at {0}').format(zip_path)
187 188 189
        self.cache_unzipping(data_cache_folder, zip_path)
        return data_cache_folder

190
    def download_model(self):
191
        # resnet50 fp32 data
192 193 194 195 196
        data_urls = [
            'http://paddle-inference-dist.cdn.bcebos.com/int8/resnet50_int8_model.tar.gz'
        ]
        data_md5s = ['4a5194524823d9b76da6e738e1367881']
        self.model_cache_folder = self.download_data(data_urls, data_md5s,
197
                                                     "resnet50_fp32")
198 199
        self.model = "ResNet-50"
        self.algo = "direct"
200

201 202 203 204 205 206 207 208 209 210 211 212 213 214
    def run_program(self, model_path, generate_int8=False, algo='direct'):
        image_shape = [3, 224, 224]
        os.environ['FLAGS_use_mkldnn'] = 'True'

        fluid.memory_optimize(fluid.default_main_program())

        exe = fluid.Executor(fluid.CPUPlace())

        [infer_program, feed_dict,
         fetch_targets] = fluid.io.load_inference_model(model_path, exe)

        t = fluid.transpiler.InferenceTranspiler()
        t.transpile(infer_program, fluid.CPUPlace())

215 216
        val_reader = paddle.batch(val(), self.batch_size)
        iterations = self.infer_iterations
217 218 219

        if generate_int8:
            int8_model = os.path.join(os.getcwd(), "calibration_out")
220
            iterations = self.sample_iterations
221 222 223 224 225

            if os.path.exists(int8_model):
                os.system("rm -rf " + int8_model)
                os.system("mkdir " + int8_model)

226
            calibrator = int8_utility.Calibrator(
227 228
                program=infer_program,
                pretrained_model=model_path,
229 230 231 232 233
                algo=algo,
                exe=exe,
                output=int8_model,
                feed_var_names=feed_dict,
                fetch_list=fetch_targets)
234 235 236

        test_info = []
        cnt = 0
237
        periods = []
238 239 240 241 242 243 244 245 246 247 248
        for batch_id, data in enumerate(val_reader()):
            image = np.array(
                [x[0].reshape(image_shape) for x in data]).astype("float32")
            label = np.array([x[1] for x in data]).astype("int64")
            label = label.reshape([-1, 1])
            running_program = calibrator.sampling_program.clone(
            ) if generate_int8 else infer_program.clone()
            for op in running_program.current_block().ops:
                if op.has_attr("use_mkldnn"):
                    op._set_attr("use_mkldnn", True)

249
            t1 = time.time()
250 251 252 253 254
            _, acc1, _ = exe.run(
                running_program,
                feed={feed_dict[0]: image,
                      feed_dict[1]: label},
                fetch_list=fetch_targets)
255 256 257 258
            t2 = time.time()
            period = t2 - t1
            periods.append(period)

259
            if generate_int8:
260
                calibrator.sample_data()
261 262 263 264

            test_info.append(np.mean(acc1) * len(data))
            cnt += len(data)

265 266 267
            if (batch_id + 1) % 100 == 0:
                print("{0} images,".format(batch_id + 1))
                sys.stdout.flush()
268

269 270
            if (batch_id + 1) == iterations:
                break
271 272

        if generate_int8:
273 274
            calibrator.save_int8_model()

275
            print(
276
                "Calibration is done and the corresponding files are generated at {}".
277 278
                format(os.path.abspath("calibration_out")))
        else:
279 280 281 282
            throughput = cnt / np.sum(periods)
            latency = np.average(periods)
            acc1 = np.sum(test_info) / cnt
            return (throughput, latency, acc1)
283

284
    def test_calibration(self):
285 286 287 288 289 290 291 292 293 294 295 296 297
        self.download_model()
        print("Start FP32 inference for {0} on {1} images ...").format(
            self.model, self.infer_iterations)
        (fp32_throughput, fp32_latency,
         fp32_acc1) = self.run_program(self.model_cache_folder + "/model")
        print("Start INT8 calibration for {0} on {1} images ...").format(
            self.model, self.sample_iterations)
        self.run_program(
            self.model_cache_folder + "/model", True, algo=self.algo)
        print("Start INT8 inference for {0} on {1} images ...").format(
            self.model, self.infer_iterations)
        (int8_throughput, int8_latency,
         int8_acc1) = self.run_program("calibration_out")
298 299
        delta_value = np.abs(fp32_acc1 - int8_acc1)
        self.assertLess(delta_value, 0.01)
300 301 302 303 304 305 306 307 308
        print(
            "FP32 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
            format(self.model, self.batch_size, fp32_throughput, fp32_latency,
                   fp32_acc1))
        print(
            "INT8 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
            format(self.model, self.batch_size, int8_throughput, int8_latency,
                   int8_acc1))
        sys.stdout.flush()
309 310 311


class TestCalibrationForMobilenetv1(TestCalibrationForResnet50):
312
    def download_model(self):
313
        # mobilenetv1 fp32 data
314 315 316 317 318
        data_urls = [
            'http://paddle-inference-dist.cdn.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
        ]
        data_md5s = ['13892b0716d26443a8cdea15b3c6438b']
        self.model_cache_folder = self.download_data(data_urls, data_md5s,
319
                                                     "mobilenetv1_fp32")
320 321
        self.model = "MobileNet-V1"
        self.algo = "KL"
322 323 324 325


if __name__ == '__main__':
    unittest.main()