test_calibration.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import os
import numpy as np
import time
import sys
import random
import paddle
import paddle.fluid as fluid
import argparse
import functools
import contextlib
import paddle.fluid.profiler as profiler
from PIL import Image, ImageEnhance
import math
sys.path.append('..')
29
import int8_inference.utility as int8_utility
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

random.seed(0)
np.random.seed(0)

DATA_DIM = 224

THREAD = 1
BUF_SIZE = 102400

DATA_DIR = 'data/ILSVRC2012'

img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))


# TODO(guomingz): Remove duplicated code from line 45 ~ line 114
def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


def process_image(sample, mode, color_jitter, rotate):
    img_path = sample[0]

    img = Image.open(img_path)

    img = resize_short(img, target_size=256)
    img = crop_image(img, target_size=DATA_DIM, center=True)

    if img.mode != 'RGB':
        img = img.convert('RGB')

    img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
    img -= img_mean
    img /= img_std

    return img, sample[1]


def _reader_creator(file_list,
                    mode,
                    shuffle=False,
                    color_jitter=False,
                    rotate=False,
                    data_dir=DATA_DIR):
    def reader():
        with open(file_list) as flist:
            full_lines = [line.strip() for line in flist]
            if shuffle:
                np.random.shuffle(full_lines)

            lines = full_lines

            for line in lines:
                img_path, label = line.split()
                img_path = os.path.join(data_dir, img_path)
                if not os.path.exists(img_path):
                    continue
                yield img_path, int(label)

    mapper = functools.partial(
        process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)

    return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)


def val(data_dir=DATA_DIR):
    file_list = os.path.join(data_dir, 'val_list.txt')
    return _reader_creator(file_list, 'val', shuffle=False, data_dir=data_dir)


class TestCalibration(unittest.TestCase):
    def setUp(self):
        # TODO(guomingz): Put the download process in the cmake.
        # Download and unzip test data set
123
        imagenet_dl_url = 'http://paddle-inference-dist.cdn.bcebos.com/int8/calibration_test_data.tar.gz'
124 125 126 127 128
        zip_file_name = imagenet_dl_url.split('/')[-1]
        cmd = 'rm -rf data {}  && mkdir data && wget {} && tar xvf {} -C data'.format(
            zip_file_name, imagenet_dl_url, zip_file_name)
        os.system(cmd)
        # resnet50 fp32 data
129
        resnet50_fp32_model_url = 'http://paddle-inference-dist.cdn.bcebos.com/int8/resnet50_int8_model.tar.gz'
130 131 132 133 134 135 136 137
        resnet50_zip_name = resnet50_fp32_model_url.split('/')[-1]
        resnet50_unzip_folder_name = 'resnet50_fp32'
        cmd = 'rm -rf {} {} && mkdir {} && wget {} && tar xvf {} -C {}'.format(
            resnet50_unzip_folder_name, resnet50_zip_name,
            resnet50_unzip_folder_name, resnet50_fp32_model_url,
            resnet50_zip_name, resnet50_unzip_folder_name)
        os.system(cmd)

138
        self.iterations = 50
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

    def run_program(self, model_path, generate_int8=False, algo='direct'):
        image_shape = [3, 224, 224]
        os.environ['FLAGS_use_mkldnn'] = 'True'

        fluid.memory_optimize(fluid.default_main_program())

        exe = fluid.Executor(fluid.CPUPlace())

        [infer_program, feed_dict,
         fetch_targets] = fluid.io.load_inference_model(model_path, exe)

        t = fluid.transpiler.InferenceTranspiler()
        t.transpile(infer_program, fluid.CPUPlace())

        val_reader = paddle.batch(val(), batch_size=1)

        if generate_int8:
            int8_model = os.path.join(os.getcwd(), "calibration_out")

            if os.path.exists(int8_model):
                os.system("rm -rf " + int8_model)
                os.system("mkdir " + int8_model)

            print("Start calibration ...")

165
            calibrator = int8_utility.Calibrator(
166 167
                program=infer_program,
                pretrained_model=model_path,
168 169 170 171 172
                algo=algo,
                exe=exe,
                output=int8_model,
                feed_var_names=feed_dict,
                fetch_list=fetch_targets)
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

        test_info = []
        cnt = 0
        for batch_id, data in enumerate(val_reader()):
            image = np.array(
                [x[0].reshape(image_shape) for x in data]).astype("float32")
            label = np.array([x[1] for x in data]).astype("int64")
            label = label.reshape([-1, 1])
            running_program = calibrator.sampling_program.clone(
            ) if generate_int8 else infer_program.clone()
            for op in running_program.current_block().ops:
                if op.has_attr("use_mkldnn"):
                    op._set_attr("use_mkldnn", True)

            _, acc1, _ = exe.run(
                running_program,
                feed={feed_dict[0]: image,
                      feed_dict[1]: label},
                fetch_list=fetch_targets)
            if generate_int8:
193
                calibrator.sample_data()
194 195 196 197 198 199 200 201 202 203

            test_info.append(np.mean(acc1) * len(data))
            cnt += len(data)

            if batch_id != self.iterations - 1:
                continue

            break

        if generate_int8:
204 205
            calibrator.save_int8_model()

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
            print(
                "Calibration is done and the corresponding files were generated at {}".
                format(os.path.abspath("calibration_out")))
        else:
            return np.sum(test_info) / cnt

    def test_calibration_for_resnet50(self):
        fp32_acc1 = self.run_program("resnet50_fp32/model")
        self.run_program("resnet50_fp32/model", True)
        int8_acc1 = self.run_program("calibration_out")
        delta_value = np.abs(fp32_acc1 - int8_acc1)
        self.assertLess(delta_value, 0.01)


if __name__ == '__main__':
    unittest.main()