Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
294d5944
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
294d5944
编写于
1月 30, 2019
作者:
H
Haihao Shen
提交者:
Tao Luo
1月 30, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Enable performance measurement in INT8 calibration unit test (#15560)
* Enable performance measurement in INT8 calibration unit test
上级
c4b9eac1
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
106 addition
and
38 deletion
+106
-38
python/paddle/fluid/contrib/tests/test_calibration.py
python/paddle/fluid/contrib/tests/test_calibration.py
+106
-38
未找到文件。
python/paddle/fluid/contrib/tests/test_calibration.py
浏览文件 @
294d5944
...
...
@@ -19,10 +19,8 @@ import sys
import
random
import
paddle
import
paddle.fluid
as
fluid
import
argparse
import
functools
import
contextlib
import
paddle.fluid.profiler
as
profiler
from
paddle.dataset.common
import
download
from
PIL
import
Image
,
ImageEnhance
import
math
...
...
@@ -43,7 +41,7 @@ img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
((
3
,
1
,
1
))
# TODO(guomingz): Remove duplicated code from
line 45 ~ line 114
# TODO(guomingz): Remove duplicated code from
resize_short, crop_image, process_image, _reader_creator
def
resize_short
(
img
,
target_size
):
percent
=
float
(
target_size
)
/
min
(
img
.
size
[
0
],
img
.
size
[
1
])
resized_width
=
int
(
round
(
img
.
size
[
0
]
*
percent
))
...
...
@@ -123,16 +121,37 @@ class TestCalibrationForResnet50(unittest.TestCase):
self
.
cache_folder
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset/'
+
self
.
int8_download
)
data_url
=
'http://paddle-inference-dist.cdn.bcebos.com/int8/calibration_test_data.tar.gz'
data_md5
=
'1b6c1c434172cca1bf9ba1e4d7a3157d'
self
.
data_cache_folder
=
self
.
download_data
(
data_url
,
data_md5
,
"data"
)
data_urls
=
[]
data_md5s
=
[]
self
.
data_cache_folder
=
''
if
os
.
environ
.
get
(
'DATASET'
)
==
'full'
:
data_urls
.
append
(
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
)
data_md5s
.
append
(
'60f6525b0e1d127f345641d75d41f0a8'
)
data_urls
.
append
(
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
)
data_md5s
.
append
(
'1e9f15f64e015e58d6f9ec3210ed18b5'
)
self
.
data_cache_folder
=
self
.
download_data
(
data_urls
,
data_md5s
,
"full_data"
,
False
)
else
:
data_urls
.
append
(
'http://paddle-inference-dist.cdn.bcebos.com/int8/calibration_test_data.tar.gz'
)
data_md5s
.
append
(
'1b6c1c434172cca1bf9ba1e4d7a3157d'
)
self
.
data_cache_folder
=
self
.
download_data
(
data_urls
,
data_md5s
,
"small_data"
,
False
)
# reader/decorator.py requires the relative path to the data folder
cmd
=
'rm -rf {0} && ln -s {1} {0}'
.
format
(
"data"
,
self
.
data_cache_folder
)
os
.
system
(
cmd
)
self
.
iterations
=
50
self
.
batch_size
=
1
self
.
sample_iterations
=
50
self
.
infer_iterations
=
50000
if
os
.
environ
.
get
(
'DATASET'
)
==
'full'
else
50
def
cache_unzipping
(
self
,
target_folder
,
zip_path
):
if
not
os
.
path
.
exists
(
target_folder
):
...
...
@@ -140,20 +159,44 @@ class TestCalibrationForResnet50(unittest.TestCase):
zip_path
)
os
.
system
(
cmd
)
def
download_data
(
self
,
data_url
,
data_md5
,
folder_name
):
download
(
data_url
,
self
.
int8_download
,
data_md5
)
def
download_data
(
self
,
data_urls
,
data_md5s
,
folder_name
,
is_model
=
True
):
data_cache_folder
=
os
.
path
.
join
(
self
.
cache_folder
,
folder_name
)
file_name
=
data_url
.
split
(
'/'
)[
-
1
]
zip_path
=
os
.
path
.
join
(
self
.
cache_folder
,
file_name
)
zip_path
=
''
if
os
.
environ
.
get
(
'DATASET'
)
==
'full'
:
file_names
=
[]
for
i
in
range
(
0
,
len
(
data_urls
)):
download
(
data_urls
[
i
],
self
.
int8_download
,
data_md5s
[
i
])
file_names
.
append
(
data_urls
[
i
].
split
(
'/'
)[
-
1
])
zip_path
=
os
.
path
.
join
(
self
.
cache_folder
,
'full_imagenet_val.tar.gz'
)
if
not
os
.
path
.
exists
(
zip_path
):
cat_command
=
'cat'
for
file_name
in
file_names
:
cat_command
+=
' '
+
os
.
path
.
join
(
self
.
cache_folder
,
file_name
)
cat_command
+=
' > '
+
zip_path
os
.
system
(
cat_command
)
if
os
.
environ
.
get
(
'DATASET'
)
!=
'full'
or
is_model
:
download
(
data_urls
[
0
],
self
.
int8_download
,
data_md5s
[
0
])
file_name
=
data_urls
[
0
].
split
(
'/'
)[
-
1
]
zip_path
=
os
.
path
.
join
(
self
.
cache_folder
,
file_name
)
print
(
'Data is downloaded at {0}'
).
format
(
zip_path
)
self
.
cache_unzipping
(
data_cache_folder
,
zip_path
)
return
data_cache_folder
def
download_
resnet50_
model
(
self
):
def
download_model
(
self
):
# resnet50 fp32 data
data_url
=
'http://paddle-inference-dist.cdn.bcebos.com/int8/resnet50_int8_model.tar.gz'
data_md5
=
'4a5194524823d9b76da6e738e1367881'
self
.
model_cache_folder
=
self
.
download_data
(
data_url
,
data_md5
,
data_urls
=
[
'http://paddle-inference-dist.cdn.bcebos.com/int8/resnet50_int8_model.tar.gz'
]
data_md5s
=
[
'4a5194524823d9b76da6e738e1367881'
]
self
.
model_cache_folder
=
self
.
download_data
(
data_urls
,
data_md5s
,
"resnet50_fp32"
)
self
.
model
=
"ResNet-50"
self
.
algo
=
"direct"
def
run_program
(
self
,
model_path
,
generate_int8
=
False
,
algo
=
'direct'
):
image_shape
=
[
3
,
224
,
224
]
...
...
@@ -169,17 +212,17 @@ class TestCalibrationForResnet50(unittest.TestCase):
t
=
fluid
.
transpiler
.
InferenceTranspiler
()
t
.
transpile
(
infer_program
,
fluid
.
CPUPlace
())
val_reader
=
paddle
.
batch
(
val
(),
batch_size
=
1
)
val_reader
=
paddle
.
batch
(
val
(),
self
.
batch_size
)
iterations
=
self
.
infer_iterations
if
generate_int8
:
int8_model
=
os
.
path
.
join
(
os
.
getcwd
(),
"calibration_out"
)
iterations
=
self
.
sample_iterations
if
os
.
path
.
exists
(
int8_model
):
os
.
system
(
"rm -rf "
+
int8_model
)
os
.
system
(
"mkdir "
+
int8_model
)
print
(
"Start calibration ..."
)
calibrator
=
int8_utility
.
Calibrator
(
program
=
infer_program
,
pretrained_model
=
model_path
,
...
...
@@ -191,6 +234,7 @@ class TestCalibrationForResnet50(unittest.TestCase):
test_info
=
[]
cnt
=
0
periods
=
[]
for
batch_id
,
data
in
enumerate
(
val_reader
()):
image
=
np
.
array
(
[
x
[
0
].
reshape
(
image_shape
)
for
x
in
data
]).
astype
(
"float32"
)
...
...
@@ -202,21 +246,28 @@ class TestCalibrationForResnet50(unittest.TestCase):
if
op
.
has_attr
(
"use_mkldnn"
):
op
.
_set_attr
(
"use_mkldnn"
,
True
)
t1
=
time
.
time
()
_
,
acc1
,
_
=
exe
.
run
(
running_program
,
feed
=
{
feed_dict
[
0
]:
image
,
feed_dict
[
1
]:
label
},
fetch_list
=
fetch_targets
)
t2
=
time
.
time
()
period
=
t2
-
t1
periods
.
append
(
period
)
if
generate_int8
:
calibrator
.
sample_data
()
test_info
.
append
(
np
.
mean
(
acc1
)
*
len
(
data
))
cnt
+=
len
(
data
)
if
batch_id
!=
self
.
iterations
-
1
:
continue
if
(
batch_id
+
1
)
%
100
==
0
:
print
(
"{0} images,"
.
format
(
batch_id
+
1
))
sys
.
stdout
.
flush
()
break
if
(
batch_id
+
1
)
==
iterations
:
break
if
generate_int8
:
calibrator
.
save_int8_model
()
...
...
@@ -225,32 +276,49 @@ class TestCalibrationForResnet50(unittest.TestCase):
"Calibration is done and the corresponding files are generated at {}"
.
format
(
os
.
path
.
abspath
(
"calibration_out"
)))
else
:
return
np
.
sum
(
test_info
)
/
cnt
throughput
=
cnt
/
np
.
sum
(
periods
)
latency
=
np
.
average
(
periods
)
acc1
=
np
.
sum
(
test_info
)
/
cnt
return
(
throughput
,
latency
,
acc1
)
def
test_calibration
(
self
):
self
.
download_resnet50_model
()
fp32_acc1
=
self
.
run_program
(
self
.
model_cache_folder
+
"/model"
)
self
.
run_program
(
self
.
model_cache_folder
+
"/model"
,
True
)
int8_acc1
=
self
.
run_program
(
"calibration_out"
)
self
.
download_model
()
print
(
"Start FP32 inference for {0} on {1} images ..."
).
format
(
self
.
model
,
self
.
infer_iterations
)
(
fp32_throughput
,
fp32_latency
,
fp32_acc1
)
=
self
.
run_program
(
self
.
model_cache_folder
+
"/model"
)
print
(
"Start INT8 calibration for {0} on {1} images ..."
).
format
(
self
.
model
,
self
.
sample_iterations
)
self
.
run_program
(
self
.
model_cache_folder
+
"/model"
,
True
,
algo
=
self
.
algo
)
print
(
"Start INT8 inference for {0} on {1} images ..."
).
format
(
self
.
model
,
self
.
infer_iterations
)
(
int8_throughput
,
int8_latency
,
int8_acc1
)
=
self
.
run_program
(
"calibration_out"
)
delta_value
=
np
.
abs
(
fp32_acc1
-
int8_acc1
)
self
.
assertLess
(
delta_value
,
0.01
)
print
(
"FP32 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}"
.
format
(
self
.
model
,
self
.
batch_size
,
fp32_throughput
,
fp32_latency
,
fp32_acc1
))
print
(
"INT8 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}"
.
format
(
self
.
model
,
self
.
batch_size
,
int8_throughput
,
int8_latency
,
int8_acc1
))
sys
.
stdout
.
flush
()
class
TestCalibrationForMobilenetv1
(
TestCalibrationForResnet50
):
def
download_mo
bilenetv1_mo
del
(
self
):
def
download_model
(
self
):
# mobilenetv1 fp32 data
data_url
=
'http://paddle-inference-dist.cdn.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
data_md5
=
'13892b0716d26443a8cdea15b3c6438b'
self
.
model_cache_folder
=
self
.
download_data
(
data_url
,
data_md5
,
data_urls
=
[
'http://paddle-inference-dist.cdn.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
self
.
model_cache_folder
=
self
.
download_data
(
data_urls
,
data_md5s
,
"mobilenetv1_fp32"
)
def
test_calibration
(
self
):
self
.
download_mobilenetv1_model
()
fp32_acc1
=
self
.
run_program
(
self
.
model_cache_folder
+
"/model"
)
self
.
run_program
(
self
.
model_cache_folder
+
"/model"
,
True
,
algo
=
'KL'
)
int8_acc1
=
self
.
run_program
(
"calibration_out"
)
delta_value
=
np
.
abs
(
fp32_acc1
-
int8_acc1
)
self
.
assertLess
(
delta_value
,
0.01
)
self
.
model
=
"MobileNet-V1"
self
.
algo
=
"KL"
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录