test_calibration.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import os
import numpy as np
import time
import sys
import random
import paddle
import paddle.fluid as fluid
import argparse
import functools
import contextlib
import paddle.fluid.profiler as profiler
26
from paddle.dataset.common import download
27 28 29
from PIL import Image, ImageEnhance
import math
sys.path.append('..')
30
import int8_inference.utility as int8_utility
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

random.seed(0)
np.random.seed(0)

DATA_DIM = 224

THREAD = 1
BUF_SIZE = 102400

DATA_DIR = 'data/ILSVRC2012'

img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))


# TODO(guomingz): Remove duplicated code from line 45 ~ line 114
def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


def process_image(sample, mode, color_jitter, rotate):
    img_path = sample[0]

    img = Image.open(img_path)

    img = resize_short(img, target_size=256)
    img = crop_image(img, target_size=DATA_DIM, center=True)

    if img.mode != 'RGB':
        img = img.convert('RGB')

    img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
    img -= img_mean
    img /= img_std

    return img, sample[1]


def _reader_creator(file_list,
                    mode,
                    shuffle=False,
                    color_jitter=False,
                    rotate=False,
                    data_dir=DATA_DIR):
    def reader():
        with open(file_list) as flist:
            full_lines = [line.strip() for line in flist]
            if shuffle:
                np.random.shuffle(full_lines)

            lines = full_lines

            for line in lines:
                img_path, label = line.split()
                img_path = os.path.join(data_dir, img_path)
                if not os.path.exists(img_path):
                    continue
                yield img_path, int(label)

    mapper = functools.partial(
        process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)

    return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)


def val(data_dir=DATA_DIR):
    file_list = os.path.join(data_dir, 'val_list.txt')
    return _reader_creator(file_list, 'val', shuffle=False, data_dir=data_dir)


120
class TestCalibrationForResnet50(unittest.TestCase):
121
    def setUp(self):
122 123 124 125 126 127 128 129 130 131 132
        self.int8_download = 'int8/download'
        self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
                                               self.int8_download)

        data_url = 'http://paddle-inference-dist.cdn.bcebos.com/int8/calibration_test_data.tar.gz'
        data_md5 = '1b6c1c434172cca1bf9ba1e4d7a3157d'
        self.data_cache_folder = self.download_data(data_url, data_md5, "data")

        # reader/decorator.py requires the relative path to the data folder
        cmd = 'rm -rf {0} && ln -s {1} {0}'.format("data",
                                                   self.data_cache_folder)
133 134
        os.system(cmd)

135
        self.iterations = 50
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    def cache_unzipping(self, target_folder, zip_path):
        if not os.path.exists(target_folder):
            cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
                                                          zip_path)
            os.system(cmd)

    def download_data(self, data_url, data_md5, folder_name):
        download(data_url, self.int8_download, data_md5)
        data_cache_folder = os.path.join(self.cache_folder, folder_name)
        file_name = data_url.split('/')[-1]
        zip_path = os.path.join(self.cache_folder, file_name)
        self.cache_unzipping(data_cache_folder, zip_path)
        return data_cache_folder

    def download_resnet50_model(self):
        # resnet50 fp32 data
        data_url = 'http://paddle-inference-dist.cdn.bcebos.com/int8/resnet50_int8_model.tar.gz'
        data_md5 = '4a5194524823d9b76da6e738e1367881'
        self.model_cache_folder = self.download_data(data_url, data_md5,
                                                     "resnet50_fp32")

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    def run_program(self, model_path, generate_int8=False, algo='direct'):
        image_shape = [3, 224, 224]
        os.environ['FLAGS_use_mkldnn'] = 'True'

        fluid.memory_optimize(fluid.default_main_program())

        exe = fluid.Executor(fluid.CPUPlace())

        [infer_program, feed_dict,
         fetch_targets] = fluid.io.load_inference_model(model_path, exe)

        t = fluid.transpiler.InferenceTranspiler()
        t.transpile(infer_program, fluid.CPUPlace())

        val_reader = paddle.batch(val(), batch_size=1)

        if generate_int8:
            int8_model = os.path.join(os.getcwd(), "calibration_out")

            if os.path.exists(int8_model):
                os.system("rm -rf " + int8_model)
                os.system("mkdir " + int8_model)

            print("Start calibration ...")

183
            calibrator = int8_utility.Calibrator(
184 185
                program=infer_program,
                pretrained_model=model_path,
186 187 188 189 190
                algo=algo,
                exe=exe,
                output=int8_model,
                feed_var_names=feed_dict,
                fetch_list=fetch_targets)
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

        test_info = []
        cnt = 0
        for batch_id, data in enumerate(val_reader()):
            image = np.array(
                [x[0].reshape(image_shape) for x in data]).astype("float32")
            label = np.array([x[1] for x in data]).astype("int64")
            label = label.reshape([-1, 1])
            running_program = calibrator.sampling_program.clone(
            ) if generate_int8 else infer_program.clone()
            for op in running_program.current_block().ops:
                if op.has_attr("use_mkldnn"):
                    op._set_attr("use_mkldnn", True)

            _, acc1, _ = exe.run(
                running_program,
                feed={feed_dict[0]: image,
                      feed_dict[1]: label},
                fetch_list=fetch_targets)
            if generate_int8:
211
                calibrator.sample_data()
212 213 214 215 216 217 218 219 220 221

            test_info.append(np.mean(acc1) * len(data))
            cnt += len(data)

            if batch_id != self.iterations - 1:
                continue

            break

        if generate_int8:
222 223
            calibrator.save_int8_model()

224
            print(
225
                "Calibration is done and the corresponding files are generated at {}".
226 227 228 229
                format(os.path.abspath("calibration_out")))
        else:
            return np.sum(test_info) / cnt

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    def test_calibration(self):
        self.download_resnet50_model()
        fp32_acc1 = self.run_program(self.model_cache_folder + "/model")
        self.run_program(self.model_cache_folder + "/model", True)
        int8_acc1 = self.run_program("calibration_out")
        delta_value = np.abs(fp32_acc1 - int8_acc1)
        self.assertLess(delta_value, 0.01)


class TestCalibrationForMobilenetv1(TestCalibrationForResnet50):
    def download_mobilenetv1_model(self):
        # mobilenetv1 fp32 data
        data_url = 'http://paddle-inference-dist.cdn.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
        data_md5 = '13892b0716d26443a8cdea15b3c6438b'
        self.model_cache_folder = self.download_data(data_url, data_md5,
                                                     "mobilenetv1_fp32")

    def test_calibration(self):
        self.download_mobilenetv1_model()
        fp32_acc1 = self.run_program(self.model_cache_folder + "/model")
        self.run_program(self.model_cache_folder + "/model", True, algo='KL')
251 252 253 254 255 256 257
        int8_acc1 = self.run_program("calibration_out")
        delta_value = np.abs(fp32_acc1 - int8_acc1)
        self.assertLess(delta_value, 0.01)


if __name__ == '__main__':
    unittest.main()