layers.py 69.3 KB
Newer Older
Y
Yu Yang 已提交
1
import core
2 3
import proto.framework_pb2 as framework_pb2
from framework import OpProtoHolder, Variable, Program, Operator
4
from initializer import Constant, Normal, Xavier, Initializer
Q
Qiao Longfei 已提交
5
from paddle.v2.fluid.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
6
import re
7
import cStringIO
Y
Yu Yang 已提交
8
from param_attr import ParamAttr
9
import contextlib
Y
Yu Yang 已提交
10

Q
QI JUN 已提交
11
__all__ = [
Y
Yu Yang 已提交
12
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
D
dzhwinter 已提交
13
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
14
    'batch_norm', 'accuracy', 'split_lod_tensor', 'While'
Q
QI JUN 已提交
15
]
Y
Yu Yang 已提交
16 17


F
fengjiayi 已提交
18 19
def fc(input,
       size,
C
chengduoZH 已提交
20
       num_flatten_dims=1,
F
fengjiayi 已提交
21
       param_attr=None,
Q
QI JUN 已提交
22
       bias_attr=None,
F
fengjiayi 已提交
23
       act=None,
C
chengduoZH 已提交
24
       name=None,
25 26
       main_program=None,
       startup_program=None):
27 28 29 30 31 32
    """
    Fully Connected Layer.

    Args:
       input: The input tensor to the function
       size: The size of the layer
C
chengduoZH 已提交
33
       num_flatten_dims: Number of columns in input
34
       param_attr: The parameters/weights to the FC Layer
Q
QI JUN 已提交
35
       param_initializer: Initializer used for the weight/parameter. If None, XavierInitializer() is used
36
       bias_attr: The bias parameter for the FC layer
Q
QI JUN 已提交
37
       bias_initializer: Initializer used for the bias. If None, then ConstantInitializer() is used
38
       act: Activation to be applied to the output of FC layer
C
chengduoZH 已提交
39
       name: Name/alias of the function
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in multiple inputs and performs the Fully Connected
    function (linear transformation) on top of each of them.
    So for input x, the output will be : Wx + b. Where W is the parameter,
    b the bias and x is the input.

    The function also applies an activation (non-linearity) on top of the
    output, if activation is passed in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
55 56 57 58 59 60 61
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
62 63 64
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
Yu Yang 已提交
65
        w = helper.create_parameter(
Y
Yu Yang 已提交
66
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Y
Yu Yang 已提交
67 68 69 70 71 72 73 74
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
75 76
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
77 78 79 80 81 82 83 84 85 86
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
Y
Yu Yang 已提交
87
    pre_activation = helper.append_bias_op(pre_bias)
Y
Yu Yang 已提交
88 89 90 91
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
92 93
def embedding(input,
              size,
94
              is_sparse=False,
Q
QI JUN 已提交
95
              param_attr=None,
F
fengjiayi 已提交
96
              dtype='float32',
97 98
              main_program=None,
              startup_program=None):
99 100 101 102
    """
    Embedding Layer.

    Args:
Y
Yu Yang 已提交
103
       param_initializer:
104 105 106 107
       input: The input to the function
       size: The size of the layer
       is_sparse: A flag that decleares whether the input is sparse
       param_attr: Parameters for this layer
F
fengjiayi 已提交
108
       dtype: The type of data : float32, float_16, int etc
109 110 111 112 113 114 115 116 117 118 119
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in the input (which is a vector of IDs) and
    performs a lookup in the lookup_table using these IDs, to result into
    the embedding of each ID in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Q
Qiao Longfei 已提交
120

Q
QI JUN 已提交
121 122
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
Y
Yu Yang 已提交
123
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
F
fengjiayi 已提交
124
    tmp = helper.create_tmp_variable(dtype)
Q
QI JUN 已提交
125 126 127 128
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
129 130
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
131 132 133
    return tmp


Q
QI JUN 已提交
134 135 136 137 138 139 140 141 142 143
# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
F
fengjiayi 已提交
144
                 dtype='float32',
Q
QI JUN 已提交
145 146 147 148 149
                 main_program=None,
                 startup_program=None):
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
F
fengjiayi 已提交
150
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
Q
QI JUN 已提交
151 152 153 154
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
Y
Yu Yang 已提交
155
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
Q
QI JUN 已提交
156

F
fengjiayi 已提交
157 158 159 160
    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Q
QI JUN 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


F
fengjiayi 已提交
183 184
def data(name,
         shape,
C
chengduoZH 已提交
185
         append_batch_size=True,
F
fengjiayi 已提交
186
         dtype='float32',
Y
Yu Yang 已提交
187
         lod_level=0,
F
fengjiayi 已提交
188
         type=core.VarDesc.VarType.LOD_TENSOR,
189
         main_program=None,
190 191
         startup_program=None,
         stop_gradient=True):
192 193 194 195 196 197
    """
    Data Layer.

    Args:
       name: The name/alias of the function
       shape: Tuple declaring the shape.
C
chengduoZH 已提交
198
       append_batch_size: Whether or not to append the data as a batch.
F
fengjiayi 已提交
199
       dtype: The type of data : float32, float_16, int etc
200
       type: The output type. By default it is LOD_TENSOR.
Y
Yu Yang 已提交
201
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
202 203 204 205 206 207 208 209 210 211 212 213 214
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program
       stop_gradient: A boolean that mentions whether gradient should flow.

    This function takes in input and based on whether data has
    to be returned back as a minibatch, it creates the global variable using
    the helper functions. The global variables can be accessed by all the
    following operations and layers in the graph.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
215
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
216 217 218 219 220 221 222 223
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

Y
Yu Yang 已提交
224 225
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
226

Y
Yu Yang 已提交
227
    return helper.create_global_variable(
228 229
        name=name,
        shape=shape,
F
fengjiayi 已提交
230
        dtype=dtype,
231
        type=type,
Y
Yu Yang 已提交
232 233
        stop_gradient=stop_gradient,
        lod_level=lod_level)
Y
Yu Yang 已提交
234 235


Y
Yu Yang 已提交
236
def create_tensor(dtype, name=None, main_program=None, startup_program=None):
Y
Yu Yang 已提交
237 238
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)
Y
Yu Yang 已提交
239 240 241


def _convert_(name):
242 243 244 245 246 247 248 249 250 251 252
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
Y
Yu Yang 已提交
253 254 255 256
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


257 258 259
def _generate_doc_string_(op_proto):
    """
    Generate docstring by OpProto
X
xuwei06 已提交
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    def _type_to_str_(tp):
        return framework_pb2.AttrType.Name(tp)

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

    buf = cStringIO.StringIO()
    buf.write(op_proto.comment)
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
        buf.write(each_input.comment)
        buf.write('\n')
        buf.write(' ' * len(line_begin))
        buf.write('Duplicable: ')
        buf.write(str(each_input.duplicable))
        buf.write('  Optional: ')
        buf.write(str(each_input.dispensable))
        buf.write('\n')

    for each_attr in op_proto.attrs:
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
        buf.write(each_attr.comment)
        buf.write('\n')

    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
        buf.write(each_opt.comment)

    return buf.getvalue()


Y
Yu Yang 已提交
309
def _create_op_func_(op_type):
310 311 312 313 314 315 316 317 318 319
    """
    Create an Operator for a Function.

    Args:
       op_type: The name of the operator to be created

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
Y
Yu Yang 已提交
320
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
321 322 323 324 325 326
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
327 328
        raise ValueError("Only one non intermediate output operator can be",
                         "automatically generated")
Y
Yu Yang 已提交
329

330
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
331
        raise ValueError(
332
            "Only non duplicable op can be automatically generated")
Y
Yu Yang 已提交
333

334 335
    for output in intermediate_outputs:
        if output.duplicable:
336 337
            raise ValueError("The op can be automatically generated only when ",
                             "all intermediate ops are not duplicable")
338 339 340

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
341

F
fengjiayi 已提交
342
    def infer_and_check_dtype(op_proto, **kwargs):
343
        """
F
fengjiayi 已提交
344
        This function performs the sanity check for dtype and
345 346
        instance type.
        """
Y
Yu Yang 已提交
347 348 349 350 351 352 353 354 355 356 357 358
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
F
fengjiayi 已提交
359 360
                    dtype = each.dtype
                elif dtype != each.dtype:
Y
Yu Yang 已提交
361 362
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
Y
Yang Yang(Tony) 已提交
363 364 365 366 367 368

        return dtype

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)

F
fengjiayi 已提交
369
        dtype = infer_and_check_dtype(op_proto, **kwargs)
Y
Yang Yang(Tony) 已提交
370 371 372 373 374 375 376

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
377 378
            inputs[ipt.name] = val

379
        outputs = dict()
Y
Yu Yang 已提交
380
        out = helper.create_tmp_variable(dtype=dtype)
381 382 383
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
384
        helper.append_op(
385
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
386
        return helper.append_activation(out)
Y
Yu Yang 已提交
387 388 389

    func.__name__ = op_type
    globals()[op_type] = func
390
    func.__doc__ = _generate_doc_string_(op_proto)
Y
Yu Yang 已提交
391 392 393 394 395
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
396
_create_op_func_('mul')
Q
Qiao Longfei 已提交
397
_create_op_func_('elementwise_add')
Y
Yu Yang 已提交
398
_create_op_func_('elementwise_div')
399
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
400
_create_op_func_('reshape')
Y
Yu Yang 已提交
401 402
_create_op_func_('sigmoid')
_create_op_func_('scale')
Y
Yang Yang(Tony) 已提交
403 404
_create_op_func_('reshape')
_create_op_func_('transpose')
405
_create_op_func_('sigmoid_cross_entropy_with_logits')
Y
Yang Yang(Tony) 已提交
406 407


F
fengjiayi 已提交
408
def cast(x, dtype, main_program=None):
409
    """
F
fengjiayi 已提交
410 411
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
412
    """
Y
Yu Yang 已提交
413
    helper = LayerHelper('cast', **locals())
F
fengjiayi 已提交
414
    out = helper.create_tmp_variable(dtype=dtype)
Y
Yu Yang 已提交
415 416 417 418
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
F
fengjiayi 已提交
419 420
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
Y
Yu Yang 已提交
421 422 423
    return out


424
def concat(input, axis, main_program=None, startup_program=None):
425 426 427 428
    """
    This function concats the input along the axis mentioned
    and returns that as the output.
    """
Q
QI JUN 已提交
429
    helper = LayerHelper('concat', **locals())
D
dzhwinter 已提交
430
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Q
QI JUN 已提交
431 432 433 434 435 436 437 438
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yu Yang 已提交
439
def sums(input, out=None, main_program=None, startup_program=None):
440 441 442 443
    """
    This function takes in the input and performs the sum operation on it
    and returns that as the output.
    """
D
dzhwinter 已提交
444
    helper = LayerHelper('sum', **locals())
Y
Yu Yang 已提交
445 446
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yu Yang 已提交
447
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
D
dzhwinter 已提交
448 449 450
    return out


Q
Qiao Longfei 已提交
451 452 453 454 455 456 457 458 459 460
def linear_chain_crf(input,
                     label,
                     param_attr=None,
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
Y
Yu Yang 已提交
461
        dtype=helper.input_dtype())
Q
Qiao Longfei 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Q
Qiao Longfei 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
def crf_decoding(input,
                 param_attr,
                 label=None,
                 main_program=None,
                 startup_program=None):
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
Yu Yang 已提交
499
def assign(input, output, main_program=None, startup_program=None):
Y
Yu Yang 已提交
500 501 502 503 504 505 506 507 508
    helper = LayerHelper('assign', **locals())
    helper.append_op(
        type='scale',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs={'scale': 1.0})
    return output


509 510
def split_lod_tensor(input,
                     mask,
Y
Yu Yang 已提交
511
                     level=0,
512 513 514
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
515 516
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


def merge_lod_tensor(in_true,
                     in_false,
                     x,
                     mask,
Y
Yu Yang 已提交
533
                     level=0,
534 535 536
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
537
    out = helper.create_tmp_variable(dtype=in_true.dtype)
538 539 540 541 542 543 544 545 546 547 548
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


549
def cos_sim(X, Y, **kwargs):
550 551 552 553
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
554
    helper = LayerHelper('cos_sim', **kwargs)
F
fengjiayi 已提交
555 556 557
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
D
dzhwinter 已提交
558 559 560 561 562 563 564
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
565
    return out
D
dzhwinter 已提交
566 567


Y
Yu Yang 已提交
568
def cross_entropy(input, label, **kwargs):
569 570 571
    """
    This function computes cross_entropy using the input and label.
    """
Y
Yu Yang 已提交
572
    helper = LayerHelper('cross_entropy', **kwargs)
F
fengjiayi 已提交
573
    out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
574 575 576 577 578 579 580 581 582 583
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
584 585 586 587
    """
    This functions returns the squared error cost using the input and label.
    The output is appending the op to do the above.
    """
Y
Yu Yang 已提交
588
    helper = LayerHelper('square_error_cost', **kwargs)
F
fengjiayi 已提交
589
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
590 591 592 593 594 595
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

F
fengjiayi 已提交
596
    square_out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
597
    helper.append_op(
Q
QI JUN 已提交
598
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
599
    return square_out
600 601


Y
Yu Yang 已提交
602
def accuracy(input, label, k=1, correct=None, total=None, **kwargs):
603 604 605 606
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
F
fengjiayi 已提交
607
    helper = LayerHelper("accuracy", **kwargs)
F
fengjiayi 已提交
608
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
F
fengjiayi 已提交
609 610 611 612 613 614 615
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
D
Dong Zhihong 已提交
616
    acc_out = helper.create_tmp_variable(dtype="float32")
Y
Yu Yang 已提交
617 618 619 620
    if correct is None:
        correct = helper.create_tmp_variable(dtype="int64")
    if total is None:
        total = helper.create_tmp_variable(dtype="int64")
F
fengjiayi 已提交
621 622
    helper.append_op(
        type="accuracy",
武毅 已提交
623 624 625 626 627
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
D
Dong Zhihong 已提交
628 629 630 631 632
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
F
fengjiayi 已提交
633 634 635
    return acc_out


Q
Qiao Longfei 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
               excluded_chunk_types=None,
               **kwargs):
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
    helper = LayerHelper("chunk_eval", **kwargs)

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
            "F1-Score": [f1_score]
        },
        attrs={
            "num_chunk_types": num_chunk_types,
            'chunk_scheme': chunk_scheme,
            'excluded_chunk_types': excluded_chunk_types or []
        })
    return precision, recall, f1_score


D
dzhwinter 已提交
670 671 672
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
673
                  filter_stride=1,
D
dzhwinter 已提交
674 675 676
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduoZH 已提交
677
                  act=None,
678 679
                  main_program=None,
                  startup_program=None):
680 681 682 683 684
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """
685

D
dzhwinter 已提交
686 687 688 689 690 691
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
D
dzhwinter 已提交
692
    filter_shape = [filter_size * input.shape[1], num_filters]
D
dzhwinter 已提交
693
    filter = helper.create_parameter(
Y
Yu Yang 已提交
694
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
D
dzhwinter 已提交
695 696 697 698 699 700
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
D
dzhwinter 已提交
701
            'Filter': [filter],
D
dzhwinter 已提交
702 703 704
        },
        outputs={"Out": pre_bias},
        attrs={
705
            'contextStride': filter_stride,
706
            'contextStart': -int(filter_size / 2),
707
            'contextLength': filter_size
D
dzhwinter 已提交
708
        })
Y
Yu Yang 已提交
709
    pre_act = helper.append_bias_op(pre_bias)
D
dzhwinter 已提交
710 711 712
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
713 714
def conv2d(input,
           num_filters,
C
chengduoZH 已提交
715
           filter_size,
F
fengjiayi 已提交
716 717
           stride=[1, 1],
           padding=None,
C
chengduoZH 已提交
718
           groups=None,
F
fengjiayi 已提交
719
           param_attr=None,
C
chengduoZH 已提交
720 721 722
           bias_attr=None,
           act=None,
           name=None,
723 724
           main_program=None,
           startup_program=None):
725 726 727 728 729 730 731
    """
    This function creates the op for a 2-dimensional Convolution.
    This is performed using the parameters of filters(size, dimensionality etc)
    , stride and other configurations for a Convolution operation.
    This funciton can also append an activation on top of the
    conv-2d output, if mentioned in the input parameters.
    """
732

733 734 735 736 737 738 739
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
C
chengduoZH 已提交
740
        if num_channels % groups != 0:
741 742 743
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
744 745 746 747 748 749 750
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

751 752
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
753

Y
Yu Yang 已提交
754 755 756
    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)
757

758
    filter = helper.create_parameter(
759 760 761
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
Y
Yu Yang 已提交
762 763
        default_initializer=_get_default_param_initializer())

764 765 766 767 768 769 770 771 772 773 774 775 776
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

Y
Yu Yang 已提交
777
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
778 779

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
780 781


D
dzhwinter 已提交
782
def sequence_pool(input, pool_type, **kwargs):
783 784 785 786 787
    """
    This function add the operator for sequence pooling.
    This is applied on top of the input using pool_type mentioned
    in the parameters.
    """
788
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
D
dzhwinter 已提交
789 790
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
D
dangqingqing 已提交
791
    max_index = helper.create_tmp_variable(dtype)
D
dzhwinter 已提交
792 793 794

    helper.append_op(
        type="sequence_pool",
D
dangqingqing 已提交
795 796 797
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
D
dzhwinter 已提交
798
        attrs={"pooltype": pool_type.upper()})
D
dzhwinter 已提交
799 800 801 802

    return pool_out


F
fengjiayi 已提交
803 804 805 806 807 808
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
809 810
           main_program=None,
           startup_program=None):
811 812 813 814
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
F
fengjiayi 已提交
815 816 817 818 819 820 821 822 823 824 825
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
826
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
827 828 829 830 831 832 833 834
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
835
            "pooling_type": pool_type,
F
fengjiayi 已提交
836
            "ksize": pool_size,
C
chengduoZH 已提交
837
            "global_pooling": global_pooling,
F
fengjiayi 已提交
838 839 840 841 842
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
843 844


Q
Qiao Longfei 已提交
845 846 847 848
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
849
               epsilon=1e-05,
Q
Qiao Longfei 已提交
850 851 852
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
853 854
               main_program=None,
               startup_program=None):
855 856 857 858
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
Q
Qiao Longfei 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
875 876 877
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
Y
Yu Yang 已提交
878 879
        default_initializer=Constant(1.0))

Q
Qiao Longfei 已提交
880
    bias = helper.create_parameter(
Y
Yu Yang 已提交
881
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=True)
882 883

    mean = helper.create_global_variable(
F
fengjiayi 已提交
884
        dtype=input.dtype, shape=param_shape, persistable=True)
885
    helper.set_variable_initializer(var=mean, initializer=Constant(0.0))
886 887

    variance = helper.create_global_variable(
F
fengjiayi 已提交
888
        dtype=input.dtype, shape=param_shape, persistable=True)
889
    helper.set_variable_initializer(var=variance, initializer=Constant(1.0))
Q
Qiao Longfei 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


924 925
def beam_search_decode(ids, scores, main_program=None, startup_program=None):
    helper = LayerHelper('beam_search_decode', **locals())
F
fengjiayi 已提交
926 927
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)
928 929 930 931 932 933 934 935 936 937 938 939 940

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


Y
Yu Yang 已提交
941 942
class BlockGuard(object):
    """
943 944 945 946
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
947 948
    """

949 950
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
951
            raise TypeError("BlockGuard takes a program")
952
        self.main_program = main_program
Y
Yu Yang 已提交
953 954

    def __enter__(self):
955
        self.main_program.create_block()
Y
Yu Yang 已提交
956 957

    def __exit__(self, exc_type, exc_val, exc_tb):
958
        self.main_program.rollback()
Y
Yu Yang 已提交
959 960 961 962 963 964
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
965 966 967 968 969 970
    """
    StaticRNNGuard class.

    StaticRNNGuard class is used to create a StaticRNN block in a program.
    """

Y
Yu Yang 已提交
971 972
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
Y
Yang Yang(Tony) 已提交
973
            raise TypeError("StaticRNNGuard takes a StaticRNN")
974
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
975 976 977 978 979 980 981
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
982 983
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
984 985 986 987 988 989 990
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
991 992 993 994 995 996 997 998 999 1000 1001 1002
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
1012 1013 1014 1015 1016 1017
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
1018 1019 1020 1021
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

1022 1023 1024
    def __init__(self, name=None, main_program=None):
        self.helper = LayerHelper(
            "static_rnn", name=name, main_program=main_program)
Y
Yu Yang 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

1039 1040 1041 1042 1043 1044 1045
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
1046 1047 1048 1049 1050 1051 1052 1053 1054
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
1055 1056
        self._assert_in_rnn_block_('memory')
        if init is None:
1057
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
1058
                raise ValueError(
1059
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
1060 1061 1062
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
1063 1064
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
1065
                dtype=batch_ref.dtype,
1066
                persistable=False)
Y
Yu Yang 已提交
1067 1068

            parent_block.append_op(
1069 1070
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
1071 1072 1073
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
1074
                    'shape': boot_var.shape,
F
fengjiayi 已提交
1075
                    'dtype': boot_var.dtype,
1076 1077
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
1078 1079 1080 1081 1082 1083
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
1084
                dtype=init.dtype,
Y
Yu Yang 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
1095 1096
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
1097 1098 1099
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
1100
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
1101 1102 1103 1104 1105 1106 1107 1108
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
1109
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
1110 1111 1112 1113
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
1114
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
1115

Y
Yu Yang 已提交
1116
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
1117 1118
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
1119
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
1133
        prog = self.helper.main_program
Y
Yu Yang 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
1150 1151
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
1191
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
1192 1193 1194 1195 1196

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
1197
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
                'step_block': rnn_block
            })
Y
Yu Yang 已提交
1215 1216


Y
Yang Yang(Tony) 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

    def __init__(self, cond, name=None, main_program=None):
        self.helper = LayerHelper("while", name=name, main_program=main_program)
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
F
fengjiayi 已提交
1247
        if cond.dtype != core.DataType.BOOL:
Y
Yang Yang(Tony) 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
                'X': [parent_block.var(x_name) for x_name in x_name_list],
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
            attrs={'step_block': while_block})


Y
Yang Yang(Tony) 已提交
1293 1294 1295 1296 1297 1298
def lstm(x,
         c_pre_init,
         hidden_dim,
         forget_bias=None,
         main_program=None,
         startup_program=None):
1299 1300 1301 1302
    """
    This function helps create an operator for the LSTM (Long Short Term
    Memory) cell that can be used inside an RNN.
    """
Y
Yang Yang(Tony) 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
    helper = LayerHelper('lstm_unit', **locals())
    rnn = StaticRNN()
    with rnn.step():
        c_pre = rnn.memory(init=c_pre_init)
        x_t = rnn.step_input(x)

        before_fc = concat(
            input=[x_t, c_pre],
            axis=1,
            main_program=main_program,
            startup_program=startup_program)
        after_fc = fc(input=before_fc,
                      size=hidden_dim * 4,
                      main_program=main_program,
                      startup_program=startup_program)

F
fengjiayi 已提交
1319 1320 1321
        dtype = x.dtype
        c = helper.create_tmp_variable(dtype)
        h = helper.create_tmp_variable(dtype)
Y
Yang Yang(Tony) 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

        helper.append_op(
            type='lstm_unit',
            inputs={"X": after_fc,
                    "C_prev": c_pre},
            outputs={"C": c,
                     "H": h},
            attrs={"forget_bias": forget_bias})

        rnn.update_memory(c_pre, c)
        rnn.output(h)

    return rnn()


1337
def lod_rank_table(x, level=0, main_program=None):
1338 1339 1340 1341
    """
    This function creates an operator for creating a LOD_RANK_TABLE
    using the input x.
    """
Y
Yu Yang 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1352 1353


F
fengjiayi 已提交
1354 1355
def max_sequence_len(rank_table, main_program=None):
    """
Y
Yu Yang 已提交
1356
    This function creates an operator to calculate the length of
F
fengjiayi 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
    max seqence through input rank_table(should be a lod_rank_table)
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


Y
Yu Yang 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
def topk(input, k, main_program=None, startup_program=None):
    helper = LayerHelper('topk', **locals())
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype='int64')
    helper.append_op(
        type='top_k',
        inputs={'X': [input]},
        outputs={'Out': [topk_out],
                 'Indices': [topk_indices]},
        attrs={'k': k})
    return topk_out, topk_indices


1381
def lod_tensor_to_array(x, table, main_program=None):
1382 1383 1384 1385
    """
    This function creates an operator to convert an LOD_Tensor to
    an array.
    """
1386 1387 1388
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
1389
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1390
        dtype=x.dtype)
1391 1392 1393 1394 1395 1396 1397 1398
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


1399
def array_to_lod_tensor(x, table, main_program=None, startup_program=None):
1400 1401 1402 1403
    """
    This function creates an operator to convert an array to a
    LOD_Tensor.
    """
1404
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
1405
    tmp = helper.create_tmp_variable(dtype=x.dtype)
1406 1407 1408 1409 1410 1411 1412 1413
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


Y
Yu Yang 已提交
1414 1415 1416 1417 1418 1419
def fill_constant(shape,
                  dtype,
                  value,
                  out=None,
                  main_program=None,
                  startup_program=None):
1420 1421
    """
    This function creates a tensor , with shape as mentioned in the input and
F
fengjiayi 已提交
1422
    specified dtype and fills this up with a constant value that
1423 1424
    comes in the input. It also sets the stop_gradient to be True.
    """
Y
Yang Yu 已提交
1425
    helper = LayerHelper("fill_constant", **locals())
Y
Yu Yang 已提交
1426 1427
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
Y
Yu Yang 已提交
1428 1429 1430 1431
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
F
fengjiayi 已提交
1432 1433 1434
        attrs={'shape': shape,
               'dtype': out.dtype,
               'value': float(value)})
Y
Yu Yang 已提交
1435 1436 1437 1438
    out.stop_gradient = True
    return out


Y
Yu Yang 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
                                  output_dim_idx=0,
                                  main_program=None,
                                  startup_program=None):
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
F
fengjiayi 已提交
1455
            'dtype': out.dtype,
Y
Yu Yang 已提交
1456 1457 1458 1459 1460 1461 1462 1463
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


Y
Yu Yang 已提交
1464
def ones(shape, dtype, main_program=None):
1465 1466 1467 1468
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 1.0.
    """
Y
Yu Yang 已提交
1469 1470 1471 1472
    return fill_constant(value=1.0, **locals())


def zeros(shape, dtype, main_program=None):
1473 1474 1475 1476
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 0.0.
    """
Y
Yu Yang 已提交
1477 1478 1479
    return fill_constant(value=0.0, **locals())


1480 1481 1482 1483 1484
def increment(x,
              value=1.0,
              in_place=True,
              main_program=None,
              startup_program=None):
1485 1486 1487 1488 1489
    """
    This function creates an operator to increment each value in the input
    `x` by an amount: `value` as mentioned in the input parameter. This
    operation is performed in-place by default.
    """
Y
Yu Yang 已提交
1490
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1491
    if not in_place:
F
fengjiayi 已提交
1492
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1493 1494
    else:
        out = x
Y
Yu Yang 已提交
1495 1496 1497
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1498
        outputs={'Out': [out]},
1499
        attrs={'step': float(value)})
Y
Yang Yu 已提交
1500
    return out
Y
Yu Yang 已提交
1501 1502


1503
def array_write(x, i, array=None, main_program=None, startup_program=None):
1504 1505 1506 1507
    """
    This function creates an operator to write the data out as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1508 1509 1510 1511 1512
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1513
            dtype=x.dtype)
Y
Yu Yang 已提交
1514 1515 1516 1517 1518 1519 1520 1521
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


Y
Yang Yang(Tony) 已提交
1522 1523 1524 1525 1526 1527 1528 1529
def create_array(dtype, main_program=None):
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
Yu Yang 已提交
1530
def less_than(x, y, cond=None, main_program=None, **ignored):
Y
Yang Yang(Tony) 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1542
def array_read(array, i, main_program=None, startup_program=None):
1543 1544 1545 1546
    """
    This function creates an operator to read the data in as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1547 1548 1549 1550 1551
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1552
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1553 1554 1555 1556 1557 1558
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1559 1560


1561
def shrink_memory(x, i, table, main_program=None, startup_program=None):
1562 1563 1564 1565
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
1566
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1567
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1568
    helper.append_op(
Y
Yang Yu 已提交
1569
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1570 1571 1572 1573 1574 1575
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1576 1577 1578


def array_length(array, main_program=None):
1579 1580 1581 1582
    """
    This function creates an operator to find the length of the
    LOD_TENSOR_ARRAY.
    """
Y
Yang Yu 已提交
1583 1584 1585 1586 1587 1588
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1589 1590


1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=None,
                     stride=None,
                     param_attr=None,
                     main_program=None,
                     startup_program=None):
    """
    The transpose of conv2d layer.
Y
Yu Yang 已提交
1602

1603
    This layer is also known as deconvolution layer.
Y
Yu Yang 已提交
1604

1605 1606 1607 1608 1609
    Args:
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
Y
Yu Yang 已提交
1610
            tuple, it must contain two integers, (image_H, image_W). This
1611 1612 1613 1614 1615 1616
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.  None if use output size to
            calculate filter_size
        padding(int|tuple): The padding size. If padding is a tuple, it must
Y
Yu Yang 已提交
1617
            contain two integers, (padding_H, padding_W). Otherwise, the
1618 1619 1620 1621 1622 1623
            padding_H = padding_W = padding.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride.
        param_attr: Parameter Attribute.
        main_program(Program): the main program
Y
Yu Yang 已提交
1624
        startup_program(Program): the startup program
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

    Returns:
        Variable: Output image.
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

    op_attr = dict()

    if isinstance(padding, int):
        op_attr['paddings'] = [padding, padding]
    elif padding is not None:
        op_attr['paddings'] = padding

    if isinstance(stride, int):
        op_attr['strides'] = stride
    elif stride is not None:
        op_attr['strides'] = stride

    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        padding = op_attr.get('paddings', [0, 0])
        stride = op_attr.get('strides', [1, 1])

        h_in = input.shape[2]
        w_in = input.shape[3]
        filter_size_h = output_size[0] - (h_in - 1) * stride[0] + 2 * padding[0]
        filter_size_w = output_size[1] - (w_in - 1) * stride[1] + 2 * padding[1]
        filter_size = [filter_size_h, filter_size_w]
    elif isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]

    filter_shape = [input_channel, num_filters] + filter_size
    img_filter = helper.create_parameter(
Y
Yu Yang 已提交
1665
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
1666 1667 1668 1669 1670 1671 1672 1673

    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': out},
        attrs=op_attr)
Y
Yu Yang 已提交
1674

1675 1676 1677
    return out


Y
Yu Yang 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yu Yang 已提交
1695 1696 1697 1698 1699
    def __init__(self,
                 inputs,
                 name=None,
                 main_program=None,
                 startup_program=None):
Y
Yu Yang 已提交
1700 1701 1702 1703 1704
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
        self.helper = LayerHelper(
Y
Yu Yang 已提交
1705 1706 1707 1708
            'conditional_block',
            name=name,
            main_program=main_program,
            startup_program=startup_program)
Y
Yu Yang 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
            parent_block.var(each_name) for each_name in params
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
            if var_name not in intermediate
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
            attrs={'block': inside_block})
Y
Yu Yang 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

    def __init__(self, cond, name=None, main_program=None,
                 startup_program=None):
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
        self.helper = LayerHelper(
            'ifelse',
            name=name,
            main_program=main_program,
            startup_program=startup_program)
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1816
                dtype=x.dtype)
Y
Yu Yang 已提交
1817 1818 1819

            out_false = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1820
                dtype=x.dtype)
Y
Yu Yang 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
                name=unique_name("_".join([self.helper.name, 'output'])),
F
fengjiayi 已提交
1862
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
            out_table.append(outside_out)

            # assign local var to outside
            assign(
                input=each_out,
                output=outside_out,
                main_program=self.helper.main_program,
                startup_program=self.helper.startup_program)

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
                    level=0,
                    main_program=self.helper.main_program,
                    startup_program=self.helper.startup_program))
        return rlist
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103


class DynamicRNN(object):
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

    def __init__(self, name=None, main_program=None, startup_program=None):
        self.helper = LayerHelper(
            'dynamic_rnn',
            name=name,
            main_program=main_program,
            startup_program=startup_program)
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
        self.zero_idx = fill_constant(shape=[1], value=0, dtype='int64')
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "step_input() can only take a Variable as its input")
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
                name=unique_name('lod_rank_table'),
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
                name=unique_name('dynamic_rnn_max_seq_len'), dtype='int64')
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
                outputs={'Out': self.cond})

        input_array = parent_block.create_var(
            name=unique_name('dynamic_rnn_input_array'),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
        return array_read(
            array=input_array, i=self.step_idx, **self.helper.to_kwargs)

    @contextlib.contextmanager
    def block(self):
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
        self.step_idx = fill_constant(shape=[1], dtype='int64', value=0)
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
            increment(
                x=self.step_idx,
                value=1.0,
                in_place=True,
                **self.helper.to_kwargs)

            for new_mem, mem_array in self.mem_link:
                array_write(
                    x=new_mem,
                    i=self.step_idx,
                    array=mem_array,
                    **self.helper.to_kwargs)

            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                cond=self.cond,
                **self.helper.to_kwargs)

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
                    x=each_array,
                    table=self.lod_rank_table,
                    **self.helper.to_kwargs))

    def __call__(self, *args, **kwargs):
        if self.status != DynamicRNN.AFTER_RNN:
            raise ValueError(
                "Dynamic RNN outputs can only be retrieved after rnn block")
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def memory(self, init=None, shape=None, value=0.0, dtype='float32'):
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
            mem_array = parent_block.create_var(
                name=unique_name('dynamic_rnn_mem_array'),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
                inputs={'X': init,
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
            retv = array_read(
                array=mem_array, i=self.step_idx, **self.helper.to_kwargs)
            retv = shrink_memory(
                x=retv,
                i=self.step_idx,
                table=self.lod_rank_table,
                **self.helper.to_kwargs)
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
                name=unique_name('mem_init'), dtype=dtype)
            arr, dtype = self.input_array[0]
            in0 = parent_block.create_var(name=unique_name('in0'), dtype=dtype)
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
                name=unique_name("_".join(
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))