Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a619695b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
a619695b
编写于
11月 27, 2017
作者:
Y
Yu Yang
提交者:
GitHub
11月 27, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Feature/enhance evaluator (#5824)
* Stash * Stash * Polish Evaluator * Merge code * Revert
上级
1f6002ed
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
144 addition
and
213 deletion
+144
-213
paddle/operators/math/selected_rows_functor.cu
paddle/operators/math/selected_rows_functor.cu
+0
-1
python/paddle/v2/fluid/evaluator.py
python/paddle/v2/fluid/evaluator.py
+96
-151
python/paddle/v2/fluid/layers.py
python/paddle/v2/fluid/layers.py
+30
-8
python/paddle/v2/fluid/tests/book/test_image_classification_train.py
...le/v2/fluid/tests/book/test_image_classification_train.py
+5
-39
python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py
.../paddle/v2/fluid/tests/book/test_recognize_digits_conv.py
+2
-2
python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py
...n/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py
+5
-6
python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py
...dle/v2/fluid/tests/book/test_understand_sentiment_conv.py
+3
-3
python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py
...luid/tests/book/test_understand_sentiment_dynamic_lstm.py
+3
-3
未找到文件。
paddle/operators/math/selected_rows_functor.cu
浏览文件 @
a619695b
...
...
@@ -227,7 +227,6 @@ template struct SelectedRowsAddToTensor<platform::GPUPlace, float>;
template
struct
SelectedRowsAddToTensor
<
platform
::
GPUPlace
,
double
>;
template
struct
SelectedRowsAddToTensor
<
platform
::
GPUPlace
,
int
>;
template
struct
SelectedRowsAddToTensor
<
platform
::
GPUPlace
,
int64_t
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
python/paddle/v2/fluid/evaluator.py
浏览文件 @
a619695b
import
numpy
as
np
from
paddle.v2.fluid.framework
import
Program
,
g_main_program
,
unique_name
,
Variable
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.framework
import
Program
,
unique_name
,
\
Variable
from
paddle.v2.fluid.layer_helper
import
LayerHelper
def
_clone_var_in_block_
(
block
,
var
):
__all__
=
[
'Accuracy'
]
def
_clone_var_
(
block
,
var
):
assert
isinstance
(
var
,
Variable
)
return
block
.
create_var
(
name
=
var
.
name
,
...
...
@@ -16,175 +21,115 @@ def _clone_var_in_block_(block, var):
class
Evaluator
(
object
):
"""
Evalutor Base class.
create metric states
add mini-batch evaluator caculate operator
add increment operator to accumulate the metric states
Base Class for all evaluators
Args:
name(str): The name of evaluator. such as, "accuracy". Used for generate
temporary variable name.
main_program(Program, optional): The evaluator should be added to this
main_program. Default g_main_program
startup_program(Program, optional):The parameter should be added to this
startup_program. Default g_startup_program
Attributes:
states(list): The list of state variables. states will be reset to zero
when `reset` is invoked.
metrics(list): The list of metrics variables. They will be calculate
every mini-batch
"""
def
__init__
(
self
,
name
,
**
kwargs
):
self
.
states
=
[]
self
.
metrics
=
[]
self
.
helper
=
LayerHelper
(
name
,
**
kwargs
)
def
reset
(
self
,
executor
,
reset_program
=
None
):
"""
init the global states
reset metric states at the begin of each pass/user specified batch
"""
self
.
_states
=
{}
if
kwargs
.
has_key
(
"main_program"
):
self
.
_main_program
=
kwargs
.
get
(
"main_program"
)
else
:
self
.
_main_program
=
g_main_program
if
reset_program
is
None
:
reset_program
=
Program
()
for
var
in
self
.
states
:
assert
isinstance
(
var
,
Variable
)
g_var
=
_clone_var_
(
reset_program
.
current_block
(),
var
)
layers
.
fill_constant
(
shape
=
g_var
.
shape
,
value
=
0.0
,
dtype
=
g_var
.
dtype
,
out
=
g_var
,
main_program
=
reset_program
)
def
states
(
self
):
return
self
.
_states
executor
.
run
(
reset_program
)
def
_update_ops
(
self
,
*
args
,
**
kwargs
):
def
eval
(
self
,
executor
,
eval_program
=
None
):
"""
append update ops to the global states
Evaluate the statistics merged by multiple mini-batches.
"""
raise
NotImplementedError
()
def
reset
(
self
,
executor
,
reset_program
=
Non
e
):
def
create_state
(
self
,
suffix
,
dtype
,
shap
e
):
"""
Clear metric states at the begin of each pass/user specified batch
"""
if
reset_program
==
None
:
reset_program
=
Program
()
else
:
reset_program
=
program
block
=
reset_program
.
global_block
()
for
k
,
var
in
self
.
_states
.
iteritems
():
g_var
=
_clone_var_in_block_
(
block
,
var
)
zeros
=
block
.
create_var
(
dtype
=
"float32"
,
persistable
=
True
)
block
.
append_op
(
type
=
"fill_constant"
,
outputs
=
{
"Out"
:
[
zeros
]},
attrs
=
{
"shape"
:
g_var
.
shape
,
"value"
:
.
0
,
"dtype"
:
5
,
})
block
.
append_op
(
type
=
"scale"
,
inputs
=
{
"X"
:
zeros
},
outputs
=
{
"Out"
:
g_var
})
executor
.
run
(
reset_program
,
fetch_list
=
self
.
_states
.
values
())
Create state variable.
NOTE: It is not a public API.
Args:
suffix(str): the state suffix.
dtype(str|core.DataType): the state data type
shape(tuple|list): the shape of state
Returns: State variable
def
eval
(
self
,
executor
,
eval_program
=
None
):
"""
Merge the mini-batch statistics to form the evaluation result for multiple mini-batches.
"""
raise
NotImplementedError
()
state
=
self
.
helper
.
create_variable
(
name
=
"_"
.
join
([
unique_name
(
self
.
helper
.
name
),
suffix
]),
persistable
=
True
,
dtype
=
dtype
,
shape
=
shape
)
self
.
states
.
append
(
state
)
return
state
class
Accuracy
(
Evaluator
):
"""
A
ccuracy need two state variable Total, Correct
A
verage Accuracy for multiple mini-batches.
"""
def
__init__
(
self
,
*
args
,
**
kwargs
):
def
__init__
(
self
,
input
,
label
,
k
=
1
,
**
kwargs
):
super
(
Accuracy
,
self
).
__init__
(
"accuracy"
,
**
kwargs
)
block
=
self
.
_main_program
.
global_block
()
g_total
=
block
.
create_var
(
name
=
unique_name
(
"Total"
),
persistable
=
True
,
dtype
=
"int64"
,
shape
=
[
1
])
g_correct
=
block
.
create_var
(
name
=
unique_name
(
"Correct"
),
persistable
=
True
,
dtype
=
"int64"
,
shape
=
[
1
])
self
.
_states
[
"Total"
]
=
g_total
self
.
_states
[
"Correct"
]
=
g_correct
def
_update_ops
(
self
,
input
,
label
,
k
=
1
,
**
kwargs
):
block
=
self
.
_main_program
.
global_block
()
topk_out
=
block
.
create_var
(
dtype
=
input
.
dtype
)
topk_indices
=
block
.
create_var
(
dtype
=
"int64"
)
block
.
append_op
(
type
=
"top_k"
,
inputs
=
{
"X"
:
[
input
]},
outputs
=
{
"Out"
:
[
topk_out
],
"Indices"
:
[
topk_indices
]},
attrs
=
{
"k"
:
k
})
acc_out
=
block
.
create_var
(
dtype
=
kwargs
.
get
(
"out_dtype"
,
"float32"
))
correct
=
block
.
create_var
(
dtype
=
"int64"
,
persistable
=
True
)
total
=
block
.
create_var
(
dtype
=
"int64"
,
persistable
=
True
)
block
.
append_op
(
type
=
"accuracy"
,
inputs
=
{
"Out"
:
[
topk_out
],
"Indices"
:
[
topk_indices
],
"Label"
:
[
label
]
},
outputs
=
{
"Accuracy"
:
[
acc_out
],
"Correct"
:
[
correct
],
"Total"
:
[
total
],
})
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
[
self
.
_states
[
"Total"
]]},
outputs
=
{
"Out"
:
[
self
.
_states
[
"Total"
]]},
attrs
=
{
"in_dtype"
:
5
,
# float32
"out_dtype"
:
2
,
# int32
})
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
[
self
.
_states
[
"Correct"
]]},
outputs
=
{
"Out"
:
[
self
.
_states
[
"Correct"
]]},
attrs
=
{
"in_dtype"
:
5
,
"out_dtype"
:
2
,
})
block
.
append_op
(
type
=
"elementwise_add"
,
inputs
=
{
"X"
:
[
self
.
_states
[
"Total"
]],
"Y"
:
[
total
]},
outputs
=
{
"Out"
:
[
self
.
_states
[
"Total"
]]})
block
.
append_op
(
type
=
"elementwise_add"
,
inputs
=
{
"X"
:
[
self
.
_states
[
"Correct"
]],
"Y"
:
[
correct
]},
outputs
=
{
"Out"
:
[
self
.
_states
[
"Correct"
]]})
return
acc_out
main_program
=
self
.
helper
.
main_program
if
main_program
.
current_block
().
idx
!=
0
:
raise
ValueError
(
"You can only invoke Evaluator in root block"
)
self
.
total
=
self
.
create_state
(
dtype
=
'int64'
,
shape
=
[
1
],
suffix
=
'total'
)
self
.
correct
=
self
.
create_state
(
dtype
=
'int64'
,
shape
=
[
1
],
suffix
=
'correct'
)
kwargs
=
{
'main_program'
:
main_program
}
total
=
self
.
helper
.
create_tmp_variable
(
dtype
=
'int'
)
correct
=
self
.
helper
.
create_tmp_variable
(
dtype
=
'int'
)
acc
=
layers
.
accuracy
(
input
=
input
,
label
=
label
,
k
=
k
,
total
=
total
,
correct
=
correct
,
**
kwargs
)
total
=
layers
.
cast
(
x
=
total
,
dtype
=
'int64'
,
**
kwargs
)
correct
=
layers
.
cast
(
x
=
correct
,
dtype
=
'int64'
,
**
kwargs
)
layers
.
sums
(
input
=
[
self
.
total
,
total
],
out
=
self
.
total
,
**
kwargs
)
layers
.
sums
(
input
=
[
self
.
correct
,
correct
],
out
=
self
.
correct
,
**
kwargs
)
self
.
metrics
.
append
(
acc
)
def
eval
(
self
,
executor
,
eval_program
=
None
):
if
eval_program
!=
None
:
eval_program
=
eval_program
else
:
if
eval_program
is
None
:
eval_program
=
Program
()
block
=
eval_program
.
global_block
()
eval_out
=
block
.
create_var
(
dtype
=
self
.
_states
[
"Total"
].
dtype
)
e_total
=
_clone_var_in_block_
(
block
,
self
.
_states
[
"Total"
])
e_correct
=
_clone_var_in_block_
(
block
,
self
.
_states
[
"Correct"
])
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
[
e_total
]},
outputs
=
{
"Out"
:
[
e_total
]},
attrs
=
{
"in_dtype"
:
2
,
# int32
"out_dtype"
:
5
,
# float32
})
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
[
e_correct
]},
outputs
=
{
"Out"
:
[
e_correct
]},
attrs
=
{
"in_dtype"
:
2
,
"out_dtype"
:
5
,
})
block
.
append_op
(
type
=
"elementwise_div"
,
inputs
=
{
"X"
:
e_correct
,
"Y"
:
e_total
},
outputs
=
{
"Out"
:
eval_out
})
out
=
executor
.
run
(
eval_program
,
fetch_list
=
[
eval_out
])
return
np
.
array
(
out
[
0
])
def
accuracy
(
*
args
,
**
kwargs
):
cls
=
Accuracy
(
*
args
,
**
kwargs
)
out
=
cls
.
_update_ops
(
*
args
,
**
kwargs
)
return
cls
,
out
block
=
eval_program
.
current_block
()
kwargs
=
{
'main_program'
:
eval_program
}
total
=
_clone_var_
(
block
,
self
.
total
)
correct
=
_clone_var_
(
block
,
self
.
correct
)
total
=
layers
.
cast
(
total
,
dtype
=
'float32'
,
**
kwargs
)
correct
=
layers
.
cast
(
correct
,
dtype
=
'float32'
,
**
kwargs
)
out
=
layers
.
elementwise_div
(
x
=
correct
,
y
=
total
,
**
kwargs
)
return
np
.
array
(
executor
.
run
(
eval_program
,
fetch_list
=
[
out
])[
0
])
python/paddle/v2/fluid/layers.py
浏览文件 @
a619695b
...
...
@@ -418,6 +418,7 @@ def _create_op_func_(op_type):
_create_op_func_
(
'mean'
)
_create_op_func_
(
'mul'
)
_create_op_func_
(
'elementwise_add'
)
_create_op_func_
(
'elementwise_div'
)
_create_op_func_
(
'dropout'
)
_create_op_func_
(
'reshape'
)
_create_op_func_
(
'sigmoid'
)
...
...
@@ -457,13 +458,14 @@ def concat(input, axis, main_program=None, startup_program=None):
return
out
def
sums
(
input
,
main_program
=
None
,
startup_program
=
None
):
def
sums
(
input
,
out
=
None
,
main_program
=
None
,
startup_program
=
None
):
"""
This function takes in the input and performs the sum operation on it
and returns that as the output.
"""
helper
=
LayerHelper
(
'sum'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
if
out
is
None
:
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'sum'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
out
})
return
out
...
...
@@ -606,7 +608,7 @@ def square_error_cost(input, label, **kwargs):
return
square_out
def
accuracy
(
input
,
label
,
k
=
1
,
**
kwargs
):
def
accuracy
(
input
,
label
,
k
=
1
,
correct
=
None
,
total
=
None
,
**
kwargs
):
"""
This function computes the accuracy using the input and label.
The output is the top_k inputs and their indices.
...
...
@@ -620,10 +622,11 @@ def accuracy(input, label, k=1, **kwargs):
outputs
=
{
"Out"
:
[
topk_out
],
"Indices"
:
[
topk_indices
]},
attrs
=
{
"k"
:
k
})
acc_out_dtype
=
kwargs
.
get
(
"out_dtype"
,
"float32"
)
acc_out
=
helper
.
create_tmp_variable
(
dtype
=
"float32"
)
correct
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
total
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
if
correct
is
None
:
correct
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
if
total
is
None
:
total
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
helper
.
append_op
(
type
=
"accuracy"
,
inputs
=
{
...
...
@@ -1355,6 +1358,19 @@ def lod_rank_table(x, level=0, main_program=None):
return
table
def
topk
(
input
,
k
,
main_program
=
None
,
startup_program
=
None
):
helper
=
LayerHelper
(
'topk'
,
**
locals
())
topk_out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
data_type
)
topk_indices
=
helper
.
create_tmp_variable
(
dtype
=
'int64'
)
helper
.
append_op
(
type
=
'top_k'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
topk_out
],
'Indices'
:
[
topk_indices
]},
attrs
=
{
'k'
:
k
})
return
topk_out
,
topk_indices
def
lod_tensor_to_array
(
x
,
table
,
main_program
=
None
):
"""
This function creates an operator to convert an LOD_Tensor to
...
...
@@ -1388,14 +1404,20 @@ def array_to_lod_tensor(x, table, main_program=None):
return
tmp
def
fill_constant
(
shape
,
dtype
,
value
,
main_program
=
None
,
startup_program
=
None
):
def
fill_constant
(
shape
,
dtype
,
value
,
out
=
None
,
main_program
=
None
,
startup_program
=
None
):
"""
This function creates a tensor , with shape as mentioned in the input and
specified dtype and fills this up with a constant value that
comes in the input. It also sets the stop_gradient to be True.
"""
helper
=
LayerHelper
(
"fill_constant"
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
)
if
out
is
None
:
out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
'fill_constant'
,
inputs
=
{},
...
...
python/paddle/v2/fluid/tests/book/test_image_classification_train.py
浏览文件 @
a619695b
...
...
@@ -5,7 +5,6 @@ import paddle.v2.fluid.framework as framework
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.nets
as
nets
import
paddle.v2.fluid.evaluator
as
evaluator
from
paddle.v2.fluid.io
import
get_inference_program
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.initializer
import
XavierInitializer
from
paddle.v2.fluid.optimizer
import
AdamOptimizer
...
...
@@ -110,18 +109,16 @@ avg_cost = layers.mean(x=cost)
optimizer
=
AdamOptimizer
(
learning_rate
=
0.001
)
opts
=
optimizer
.
minimize
(
avg_cost
)
accuracy
,
acc_out
=
evaluator
.
a
ccuracy
(
input
=
predict
,
label
=
label
)
accuracy
=
evaluator
.
A
ccuracy
(
input
=
predict
,
label
=
label
)
BATCH_SIZE
=
128
PASS_NUM
=
1
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(),
buf_size
=
BATCH_SIZE
*
10
),
paddle
.
dataset
.
cifar
.
train10
(),
buf_size
=
128
*
10
),
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
BATCH_SIZE
)
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
...
...
@@ -147,46 +144,15 @@ for pass_id in range(PASS_NUM):
outs
=
exe
.
run
(
framework
.
default_main_program
(),
feed
=
{
"pixel"
:
tensor_img
,
"label"
:
tensor_y
},
fetch_list
=
[
avg_cost
,
acc_out
]
)
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
loss
=
np
.
array
(
outs
[
0
])
acc
=
np
.
array
(
outs
[
1
])
pass_acc
=
accuracy
.
eval
(
exe
)
batch_id
=
batch_id
+
1
test_accuracy
,
test_acc_out
=
evaluator
.
accuracy
(
input
=
predict
,
label
=
label
)
test_target
=
[
avg_cost
,
test_acc_out
]
+
test_accuracy
.
states
().
values
()
inference_program
=
get_inference_program
(
test_target
)
test_accuracy
.
reset
(
exe
)
for
data
in
test_reader
():
x_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
(
data_shape
),
data
)).
astype
(
"float32"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
np
.
expand_dims
(
y_data
,
axis
=
1
)
tensor_x
=
core
.
LoDTensor
()
tensor_x
.
set
(
x_data
,
place
)
tensor_y
=
core
.
LoDTensor
()
tensor_y
.
set
(
y_data
,
place
)
outs
=
exe
.
run
(
inference_program
,
feed
=
{
'pixel'
:
tensor_x
,
'label'
:
tensor_y
},
fetch_list
=
[
avg_cost
,
test_acc_out
])
out
=
np
.
array
(
outs
[
0
])
acc
=
np
.
array
(
outs
[
1
])
test_pass_acc
=
test_accuracy
.
eval
(
exe
)
print
(
"pass_id:"
+
str
(
pass_id
)
+
" batch_id:"
+
str
(
batch_id
)
+
" loss:"
+
str
(
loss
)
+
" acc:"
+
str
(
acc
)
+
" pass_acc:"
+
str
(
pass_acc
)
+
" test_pass_acc:"
+
str
(
test_pass_acc
))
pass_acc
))
batch_id
=
batch_id
+
1
if
batch_id
>
1
:
# this model is slow, so if we can train two mini batch, we think it works properly.
...
...
python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py
浏览文件 @
a619695b
...
...
@@ -31,7 +31,7 @@ avg_cost = layers.mean(x=cost)
optimizer
=
AdamOptimizer
(
learning_rate
=
0.01
,
beta1
=
0.9
,
beta2
=
0.999
)
opts
=
optimizer
.
minimize
(
avg_cost
)
accuracy
,
acc_out
=
evaluator
.
a
ccuracy
(
input
=
predict
,
label
=
label
)
accuracy
=
evaluator
.
A
ccuracy
(
input
=
predict
,
label
=
label
)
BATCH_SIZE
=
50
PASS_NUM
=
3
...
...
@@ -61,7 +61,7 @@ for pass_id in range(PASS_NUM):
outs
=
exe
.
run
(
framework
.
default_main_program
(),
feed
=
{
"pixel"
:
tensor_img
,
"label"
:
tensor_y
},
fetch_list
=
[
avg_cost
,
acc_out
]
)
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
loss
=
np
.
array
(
outs
[
0
])
acc
=
np
.
array
(
outs
[
1
])
pass_acc
=
accuracy
.
eval
(
exe
)
...
...
python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py
浏览文件 @
a619695b
...
...
@@ -36,7 +36,7 @@ avg_cost = layers.mean(x=cost)
optimizer
=
MomentumOptimizer
(
learning_rate
=
0.001
,
momentum
=
0.9
)
opts
=
optimizer
.
minimize
(
avg_cost
)
accuracy
,
acc_out
=
evaluator
.
a
ccuracy
(
input
=
predict
,
label
=
label
)
accuracy
=
evaluator
.
A
ccuracy
(
input
=
predict
,
label
=
label
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -67,15 +67,14 @@ for pass_id in range(PASS_NUM):
outs
=
exe
.
run
(
framework
.
default_main_program
(),
feed
=
{
'x'
:
tensor_x
,
'y'
:
tensor_y
},
fetch_list
=
[
avg_cost
,
acc_out
]
)
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
out
=
np
.
array
(
outs
[
0
])
acc
=
np
.
array
(
outs
[
1
])
pass_acc
=
accuracy
.
eval
(
exe
)
test_accuracy
,
test_acc_out
=
evaluator
.
accuracy
(
input
=
predict
,
label
=
label
)
test_accuracy
=
evaluator
.
Accuracy
(
input
=
predict
,
label
=
label
)
test_target
=
[
avg_cost
,
test_acc_out
]
+
test_accuracy
.
states
().
values
()
test_target
=
[
avg_cost
]
+
test_accuracy
.
metrics
+
test_accuracy
.
states
inference_program
=
get_inference_program
(
test_target
)
test_accuracy
.
reset
(
exe
)
...
...
@@ -93,7 +92,7 @@ for pass_id in range(PASS_NUM):
outs
=
exe
.
run
(
inference_program
,
feed
=
{
'x'
:
tensor_x
,
'y'
:
tensor_y
},
fetch_list
=
[
avg_cost
,
test_acc_out
]
)
fetch_list
=
[
avg_cost
]
+
test_accuracy
.
metrics
)
out
=
np
.
array
(
outs
[
0
])
acc
=
np
.
array
(
outs
[
1
])
...
...
python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py
浏览文件 @
a619695b
...
...
@@ -32,9 +32,9 @@ def convolution_net(input_dim, class_dim=2, emb_dim=32, hid_dim=32):
cost
=
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
layers
.
mean
(
x
=
cost
)
adam_optimizer
=
AdamOptimizer
(
learning_rate
=
0.002
)
opts
=
adam_optimizer
.
minimize
(
avg_cost
)
accuracy
,
acc_out
=
evaluator
.
a
ccuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
accuracy
,
acc
_out
adam_optimizer
.
minimize
(
avg_cost
)
accuracy
=
evaluator
.
A
ccuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
accuracy
,
acc
uracy
.
metrics
[
0
]
def
to_lodtensor
(
data
,
place
):
...
...
python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py
浏览文件 @
a619695b
...
...
@@ -41,9 +41,9 @@ def stacked_lstm_net(input_dim,
cost
=
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
layers
.
mean
(
x
=
cost
)
adam_optimizer
=
AdamOptimizer
(
learning_rate
=
0.002
)
opts
=
adam_optimizer
.
minimize
(
avg_cost
)
accuracy
,
acc_out
=
evaluator
.
a
ccuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
accuracy
,
acc
_out
adam_optimizer
.
minimize
(
avg_cost
)
accuracy
=
evaluator
.
A
ccuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
accuracy
,
acc
uracy
.
metrics
[
0
]
def
to_lodtensor
(
data
,
place
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录