layers.py 49.9 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3
import paddle.v2.fluid.core as core
import paddle.v2.fluid.proto.framework_pb2 as framework_pb2
from paddle.v2.fluid.framework import OpProtoHolder, Variable, Program, \
Y
Yu Yang 已提交
4
    Operator
Q
Qiao Longfei 已提交
5
from paddle.v2.fluid.initializer import ConstantInitializer, \
6
    NormalInitializer, XavierInitializer
Q
Qiao Longfei 已提交
7
from paddle.v2.fluid.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
8
import re
9
import cStringIO
Y
Yu Yang 已提交
10

Q
QI JUN 已提交
11
__all__ = [
Y
Yu Yang 已提交
12
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
D
dzhwinter 已提交
13
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
14
    'batch_norm', 'accuracy', 'split_lod_tensor'
Q
QI JUN 已提交
15
]
Y
Yu Yang 已提交
16 17


F
fengjiayi 已提交
18 19 20
def fc(input,
       size,
       param_attr=None,
21
       param_initializer=None,
Q
QI JUN 已提交
22
       bias_attr=None,
23
       bias_initializer=None,
F
fengjiayi 已提交
24 25 26
       name=None,
       act=None,
       num_flatten_dims=1,
27 28
       main_program=None,
       startup_program=None):
29 30 31 32 33 34 35
    """
    Fully Connected Layer.

    Args:
       input: The input tensor to the function
       size: The size of the layer
       param_attr: The parameters/weights to the FC Layer
36 37
       param_initializer: Initializer used for the weight/parameter.
       If None, XavierInitializer() is used
38
       bias_attr: The bias parameter for the FC layer
39 40
       bias_initializer: Initializer used for the bias.
       If None, then ConstantInitializer() is used
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
       name: Name/alias of the function
       act: Activation to be applied to the output of FC layer
       num_flatten_dims: Number of columns in input
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in multiple inputs and performs the Fully Connected
    function (linear transformation) on top of each of them.
    So for input x, the output will be : Wx + b. Where W is the parameter,
    b the bias and x is the input.

    The function also applies an activation (non-linearity) on top of the
    output, if activation is passed in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
59 60 61 62 63 64 65

    def _get_default_param_initializer():
        return XavierInitializer()

    def _get_default_bias_initializer():
        return ConstantInitializer()

Y
Yu Yang 已提交
66 67 68 69
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

70 71 72 73 74 75
    if param_initializer is None:
        param_initializer = _get_default_param_initializer()

    if bias_initializer is None:
        bias_initializer = _get_default_bias_initializer()

Y
Yu Yang 已提交
76 77 78
    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
79 80 81
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
Yu Yang 已提交
82
        w = helper.create_parameter(
83 84 85 86
            attr=param_attr,
            initializer=param_initializer,
            shape=param_shape,
            dtype=dtype)
Y
Yu Yang 已提交
87 88 89 90 91 92 93 94
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
95 96
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
97 98 99 100 101 102 103 104 105 106
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
107
    pre_activation = helper.append_bias_op(pre_bias, bias_initializer)
Y
Yu Yang 已提交
108 109 110 111
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
112 113 114
def embedding(input,
              size,
              data_type='float32',
115
              is_sparse=False,
Q
QI JUN 已提交
116
              param_attr=None,
117 118
              main_program=None,
              startup_program=None):
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    """
    Embedding Layer.

    Args:
       input: The input to the function
       size: The size of the layer
       data_type: The type of data : float32, float_16, int etc
       is_sparse: A flag that decleares whether the input is sparse
       param_attr: Parameters for this layer
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in the input (which is a vector of IDs) and
    performs a lookup in the lookup_table using these IDs, to result into
    the embedding of each ID in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Q
QI JUN 已提交
139 140 141 142 143 144 145 146
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=data_type)
    tmp = helper.create_tmp_variable(data_type)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
147 148
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
149 150 151
    return tmp


Q
QI JUN 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 data_type='float32',
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 main_program=None,
                 startup_program=None):
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=data_type)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=data_type, suffix='b')

    hidden = helper.create_tmp_variable(data_type)
    cell = helper.create_tmp_variable(data_type)
    batch_gate = helper.create_tmp_variable(data_type)
    batch_cell_pre_act = helper.create_tmp_variable(data_type)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


F
fengjiayi 已提交
201 202 203 204
def data(name,
         shape,
         data_type='float32',
         type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
205
         append_batch_size=True,
206
         main_program=None,
207 208
         startup_program=None,
         stop_gradient=True):
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    """
    Data Layer.

    Args:
       name: The name/alias of the function
       shape: Tuple declaring the shape.
       data_type: The type of data : float32, float_16, int etc
       type: The output type. By default it is LOD_TENSOR.
       append_batch_size: Whether or not to append the data as a batch.
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program
       stop_gradient: A boolean that mentions whether gradient should flow.

    This function takes in input and based on whether data has
    to be returned back as a minibatch, it creates the global variable using
    the helper functions. The global variables can be accessed by all the
    following operations and layers in the graph.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
231
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
232 233 234 235 236 237 238 239
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

Y
Yu Yang 已提交
240 241
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
242

Y
Yu Yang 已提交
243
    return helper.create_global_variable(
244 245 246 247 248
        name=name,
        shape=shape,
        dtype=data_type,
        type=type,
        stop_gradient=stop_gradient)
Y
Yu Yang 已提交
249 250


Y
Yu Yang 已提交
251 252 253
def create_tensor(dtype, name=None, main_program=None):
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)
Y
Yu Yang 已提交
254 255 256


def _convert_(name):
257 258 259 260 261 262 263 264 265 266 267
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
Y
Yu Yang 已提交
268 269 270 271
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


272 273 274
def _generate_doc_string_(op_proto):
    """
    Generate docstring by OpProto
X
xuwei06 已提交
275

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    def _type_to_str_(tp):
        return framework_pb2.AttrType.Name(tp)

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

    buf = cStringIO.StringIO()
    buf.write(op_proto.comment)
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
        buf.write(each_input.comment)
        buf.write('\n')
        buf.write(' ' * len(line_begin))
        buf.write('Duplicable: ')
        buf.write(str(each_input.duplicable))
        buf.write('  Optional: ')
        buf.write(str(each_input.dispensable))
        buf.write('\n')

    for each_attr in op_proto.attrs:
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
        buf.write(each_attr.comment)
        buf.write('\n')

    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
        buf.write(each_opt.comment)

    return buf.getvalue()


Y
Yu Yang 已提交
324
def _create_op_func_(op_type):
325 326 327 328 329 330 331 332 333 334
    """
    Create an Operator for a Function.

    Args:
       op_type: The name of the operator to be created

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
Y
Yu Yang 已提交
335
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
336 337 338 339 340 341
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
342 343
        raise ValueError("Only one non intermediate output operator can be",
                         "automatically generated")
Y
Yu Yang 已提交
344

345
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
346
        raise ValueError(
347
            "Only non duplicable op can be automatically generated")
Y
Yu Yang 已提交
348

349 350
    for output in intermediate_outputs:
        if output.duplicable:
351 352
            raise ValueError("The op can be automatically generated only when ",
                             "all intermediate ops are not duplicable")
353 354 355

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
356

Y
Yang Yang(Tony) 已提交
357
    def infer_and_check_data_type(op_proto, **kwargs):
358 359 360 361
        """
        This function performs the sanity check for data_type and
        instance type.
        """
Y
Yu Yang 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.data_type
                elif dtype != each.data_type:
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
Y
Yang Yang(Tony) 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391

        return dtype

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)

        dtype = infer_and_check_data_type(op_proto, **kwargs)

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
392 393
            inputs[ipt.name] = val

394
        outputs = dict()
Y
Yu Yang 已提交
395
        out = helper.create_tmp_variable(dtype=dtype)
396 397 398
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
399
        helper.append_op(
400
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
401
        return helper.append_activation(out)
Y
Yu Yang 已提交
402 403 404

    func.__name__ = op_type
    globals()[op_type] = func
405
    func.__doc__ = _generate_doc_string_(op_proto)
Y
Yu Yang 已提交
406 407 408 409 410
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
411
_create_op_func_('mul')
Q
Qiao Longfei 已提交
412
_create_op_func_('elementwise_add')
413
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
414
_create_op_func_('reshape')
Y
Yu Yang 已提交
415 416 417
_create_op_func_('elementwise_add')
_create_op_func_('sigmoid')
_create_op_func_('scale')
Y
Yang Yang(Tony) 已提交
418 419 420 421 422
_create_op_func_('reshape')
_create_op_func_('transpose')


def fill_constant(data_type, shape, value=None, program=None):
423 424 425 426 427
    """
    This function creates a tensor , with shape as mentioned in the input and
    specified data_type and fills this up with a constant value that
    comes in the input.
    """
Y
Yang Yang(Tony) 已提交
428 429 430 431 432 433 434 435 436
    helper = LayerHelper('fill_constant', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='fill_constant',
        outputs={'Out': [out]},
        attrs={'data_type': data_type,
               'shape': shape,
               'value': value})
    return out
Y
Yu Yang 已提交
437 438


439
def cast(x, data_type, main_program=None):
440 441 442 443
    """
    This function takes in the input with input_data_type
    and casts it to the output_data_type as the output.
    """
Y
Yu Yang 已提交
444 445 446 447 448 449 450 451 452 453 454
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_data_type': x.data_type,
               'out_data_type': out.data_type})
    return out


455
def concat(input, axis, main_program=None, startup_program=None):
456 457 458 459
    """
    This function concats the input along the axis mentioned
    and returns that as the output.
    """
Q
QI JUN 已提交
460
    helper = LayerHelper('concat', **locals())
D
dzhwinter 已提交
461
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Q
QI JUN 已提交
462 463 464 465 466 467 468 469
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


470
def sums(input, main_program=None, startup_program=None):
471 472 473 474
    """
    This function takes in the input and performs the sum operation on it
    and returns that as the output.
    """
D
dzhwinter 已提交
475 476
    helper = LayerHelper('sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yu Yang 已提交
477
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
D
dzhwinter 已提交
478 479 480
    return out


Y
Yu Yang 已提交
481 482 483 484 485 486 487 488 489 490
def assign(input, output, main_program=None):
    helper = LayerHelper('assign', **locals())
    helper.append_op(
        type='scale',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs={'scale': 1.0})
    return output


491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
def split_lod_tensor(input,
                     mask,
                     level,
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('split_lod_tensor', **locals())
    out_true = helper.create_tmp_variable(dtype=input.data_type)
    out_false = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


def merge_lod_tensor(in_true,
                     in_false,
                     x,
                     mask,
                     level,
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('merge_lod_tensor', **locals())
    out = helper.create_tmp_variable(dtype=x.data_type)
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


531
def cos_sim(X, Y, **kwargs):
532 533 534 535
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
536 537 538 539
    helper = LayerHelper('cos_sim', **kwargs)
    out = helper.create_tmp_variable(dtype=X.data_type)
    xnorm = helper.create_tmp_variable(dtype=X.data_type)
    ynorm = helper.create_tmp_variable(dtype=X.data_type)
D
dzhwinter 已提交
540 541 542 543 544 545 546
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
547
    return out
D
dzhwinter 已提交
548 549


Y
Yu Yang 已提交
550
def cross_entropy(input, label, **kwargs):
551 552 553
    """
    This function computes cross_entropy using the input and label.
    """
Y
Yu Yang 已提交
554 555 556 557 558 559 560 561 562 563 564 565
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
566 567 568 569
    """
    This functions returns the squared error cost using the input and label.
    The output is appending the op to do the above.
    """
Y
Yu Yang 已提交
570 571 572 573 574 575 576 577 578 579
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
Q
QI JUN 已提交
580
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
581
    return square_out
582 583


F
fengjiayi 已提交
584
def accuracy(input, label, k=1, **kwargs):
585 586 587 588
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
F
fengjiayi 已提交
589 590 591 592 593 594 595 596 597 598
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out_dtype = kwargs.get("out_dtype", "float32")
D
Dong Zhihong 已提交
599 600 601
    acc_out = helper.create_tmp_variable(dtype="float32")
    correct = helper.create_tmp_variable(dtype="int64")
    total = helper.create_tmp_variable(dtype="int64")
F
fengjiayi 已提交
602 603
    helper.append_op(
        type="accuracy",
武毅 已提交
604 605 606 607 608
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
D
Dong Zhihong 已提交
609 610 611 612 613
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
F
fengjiayi 已提交
614 615 616
    return acc_out


D
dzhwinter 已提交
617 618 619
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
620
                  filter_stride=1,
621
                  act=None,
D
dzhwinter 已提交
622 623
                  padding=None,
                  bias_attr=None,
624
                  bias_initializer=None,
D
dzhwinter 已提交
625
                  param_attr=None,
626
                  param_initializer=None,
627 628
                  main_program=None,
                  startup_program=None):
629 630 631 632 633
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """
634 635 636 637 638 639 640

    def _get_default_bias_initializer():
        return ConstantInitializer()

    def _get_default_param_initializer():
        return XavierInitializer()

D
dzhwinter 已提交
641 642 643 644 645 646 647
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()

648 649 650 651 652
    if param_initializer is None:
        param_initializer = _get_default_param_initializer()
    if bias_initializer is None:
        bias_initializer = _get_default_bias_initializer()

D
dzhwinter 已提交
653
    filter_shape = [filter_size * input.shape[1], num_filters]
D
dzhwinter 已提交
654
    filter = helper.create_parameter(
655 656 657 658
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        initializer=param_initializer)
D
dzhwinter 已提交
659 660 661 662 663 664
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
D
dzhwinter 已提交
665
            'Filter': [filter],
D
dzhwinter 已提交
666 667 668
        },
        outputs={"Out": pre_bias},
        attrs={
669
            'contextStride': filter_stride,
670
            'contextStart': -int(filter_size / 2),
671
            'contextLength': filter_size
D
dzhwinter 已提交
672
        })
673
    pre_act = helper.append_bias_op(pre_bias, bias_initializer)
D
dzhwinter 已提交
674 675 676
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
677 678 679 680 681 682 683 684 685
def conv2d(input,
           num_filters,
           name=None,
           filter_size=[1, 1],
           act=None,
           groups=None,
           stride=[1, 1],
           padding=None,
           bias_attr=None,
686
           bias_initializer=None,
F
fengjiayi 已提交
687
           param_attr=None,
688
           param_initializer=None,
689 690
           main_program=None,
           startup_program=None):
691 692 693 694 695 696 697
    """
    This function creates the op for a 2-dimensional Convolution.
    This is performed using the parameters of filters(size, dimensionality etc)
    , stride and other configurations for a Convolution operation.
    This funciton can also append an activation on top of the
    conv-2d output, if mentioned in the input parameters.
    """
698 699 700 701 702 703 704 705

    def _get_default_bias_initializer():
        return ConstantInitializer()

    def _get_default_param_initializer(filter_size, num_channels):
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return NormalInitializer(0.0, std, 0)

706 707 708 709 710 711 712
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
C
chengduoZH 已提交
713
        if num_channels % groups != 0:
714 715 716
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
717 718 719 720 721 722 723
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

724 725
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
726

727 728 729 730 731 732
    if param_initializer is None:
        param_initializer = _get_default_param_initializer(filter_size,
                                                           num_channels)
    if bias_initializer is None:
        bias_initializer = _get_default_bias_initializer()

733
    filter = helper.create_parameter(
734 735 736
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
737
        initializer=param_initializer)
738 739 740 741 742 743 744 745 746 747 748 749 750
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

751 752
    pre_act = helper.append_bias_op(
        pre_bias, bias_initializer, dim_start=1, dim_end=2)
753 754

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
755 756


D
dzhwinter 已提交
757
def sequence_pool(input, pool_type, **kwargs):
758 759 760 761 762
    """
    This function add the operator for sequence pooling.
    This is applied on top of the input using pool_type mentioned
    in the parameters.
    """
763
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
D
dzhwinter 已提交
764 765
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
D
dangqingqing 已提交
766
    max_index = helper.create_tmp_variable(dtype)
D
dzhwinter 已提交
767 768 769

    helper.append_op(
        type="sequence_pool",
D
dangqingqing 已提交
770 771 772
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
D
dzhwinter 已提交
773
        attrs={"pooltype": pool_type.upper()})
D
dzhwinter 已提交
774 775 776 777

    return pool_out


F
fengjiayi 已提交
778 779 780 781 782 783
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
784 785
           main_program=None,
           startup_program=None):
786 787 788 789
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
F
fengjiayi 已提交
790 791 792 793 794 795 796 797 798 799 800
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
801
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
802 803 804 805 806 807 808 809
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
810
            "pooling_type": pool_type,
F
fengjiayi 已提交
811
            "ksize": pool_size,
C
chengduoZH 已提交
812
            "global_pooling": global_pooling,
F
fengjiayi 已提交
813 814 815 816 817
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
818 819


Q
Qiao Longfei 已提交
820 821 822 823
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
824
               epsilon=1e-05,
Q
Qiao Longfei 已提交
825 826 827
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
828 829
               main_program=None,
               startup_program=None):
830 831 832 833
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
Q
Qiao Longfei 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
850 851 852 853
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
854
    bias = helper.create_parameter(
855 856 857 858 859 860 861 862 863 864 865 866 867 868
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(0.0))

    mean = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=mean, initializer=ConstantInitializer(0.0))

    variance = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=variance, initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
def beam_search_decode(ids, scores, main_program=None, startup_program=None):
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.data_type)
    sentence_scores = helper.create_tmp_variable(dtype=ids.data_type)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


Y
Yu Yang 已提交
920 921
class BlockGuard(object):
    """
922 923 924 925
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
926 927
    """

928 929
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
930
            raise TypeError("BlockGuard takes a program")
931
        self.main_program = main_program
Y
Yu Yang 已提交
932 933

    def __enter__(self):
934
        self.main_program.create_block()
Y
Yu Yang 已提交
935 936

    def __exit__(self, exc_type, exc_val, exc_tb):
937
        self.main_program.rollback()
Y
Yu Yang 已提交
938 939 940 941 942 943
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
944 945 946 947 948 949
    """
    StaticRNNGuard class.

    StaticRNNGuard class is used to create a StaticRNN block in a program.
    """

Y
Yu Yang 已提交
950 951
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
Y
Yang Yang(Tony) 已提交
952
            raise TypeError("StaticRNNGuard takes a StaticRNN")
953
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
954 955 956 957 958 959 960
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
961 962
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
963 964 965 966 967 968 969
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
970 971 972 973 974 975 976 977 978 979 980 981
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
982 983 984 985 986 987 988 989 990
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
991 992 993 994 995 996
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
997 998 999 1000
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

1001 1002 1003
    def __init__(self, name=None, main_program=None):
        self.helper = LayerHelper(
            "static_rnn", name=name, main_program=main_program)
Y
Yu Yang 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

1018 1019 1020 1021 1022 1023 1024
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
1025 1026 1027 1028 1029 1030 1031 1032 1033
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
1034 1035
        self._assert_in_rnn_block_('memory')
        if init is None:
1036
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
1037
                raise ValueError(
1038
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
1039 1040 1041
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
1042 1043 1044 1045
                name=var_name,
                shape=shape,
                dtype=batch_ref.data_type,
                persistable=False)
Y
Yu Yang 已提交
1046 1047

            parent_block.append_op(
1048 1049
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
1050 1051 1052
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
1053 1054 1055 1056
                    'shape': boot_var.shape,
                    'data_type': boot_var.data_type,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
                dtype=init.data_type,
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
1074 1075
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
1076 1077 1078 1079 1080
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
            name=x.name,
            dtype=x.data_type,
Y
Yu Yang 已提交
1081
            shape=list(x.shape[1:]),
Y
Yu Yang 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090
            type=x.type)
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

Y
Yu Yang 已提交
1091 1092 1093 1094 1095 1096 1097
        tmp_o = self.helper.create_tmp_variable(dtype=o.data_type)
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'data_type': o.data_type})

Y
Yu Yang 已提交
1098
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
1099 1100 1101
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.data_type)
Y
Yu Yang 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
1115
        prog = self.helper.main_program
Y
Yu Yang 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
1132 1133
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.data_type)

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'data_type': mem_var.data_type})

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
                'step_block': rnn_block
            })
Y
Yu Yang 已提交
1197 1198


Y
Yang Yang(Tony) 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

    def __init__(self, cond, name=None, main_program=None):
        self.helper = LayerHelper("while", name=name, main_program=main_program)
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
        if cond.data_type != core.DataType.BOOL:
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
                'X': [parent_block.var(x_name) for x_name in x_name_list],
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
            attrs={'step_block': while_block})


Y
Yang Yang(Tony) 已提交
1275 1276 1277 1278 1279 1280
def lstm(x,
         c_pre_init,
         hidden_dim,
         forget_bias=None,
         main_program=None,
         startup_program=None):
1281 1282 1283 1284
    """
    This function helps create an operator for the LSTM (Long Short Term
    Memory) cell that can be used inside an RNN.
    """
Y
Yang Yang(Tony) 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
    helper = LayerHelper('lstm_unit', **locals())
    rnn = StaticRNN()
    with rnn.step():
        c_pre = rnn.memory(init=c_pre_init)
        x_t = rnn.step_input(x)

        before_fc = concat(
            input=[x_t, c_pre],
            axis=1,
            main_program=main_program,
            startup_program=startup_program)
        after_fc = fc(input=before_fc,
                      size=hidden_dim * 4,
                      main_program=main_program,
                      startup_program=startup_program)

        data_type = x.data_type
        c = helper.create_tmp_variable(data_type)
        h = helper.create_tmp_variable(data_type)

        helper.append_op(
            type='lstm_unit',
            inputs={"X": after_fc,
                    "C_prev": c_pre},
            outputs={"C": c,
                     "H": h},
            attrs={"forget_bias": forget_bias})

        rnn.update_memory(c_pre, c)
        rnn.output(h)

    return rnn()


1319
def lod_rank_table(x, level=0, main_program=None):
1320 1321 1322 1323
    """
    This function creates an operator for creating a LOD_RANK_TABLE
    using the input x.
    """
Y
Yu Yang 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1334 1335


1336
def lod_tensor_to_array(x, table, main_program=None):
1337 1338 1339 1340
    """
    This function creates an operator to convert an LOD_Tensor to
    an array.
    """
1341 1342 1343
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
1344 1345
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=x.data_type)
1346 1347 1348 1349 1350 1351 1352 1353 1354
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


def array_to_lod_tensor(x, table, main_program=None):
1355 1356 1357 1358
    """
    This function creates an operator to convert an array to a
    LOD_Tensor.
    """
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    helper = LayerHelper("array_to_lod_tensor", **locals())
    tmp = helper.create_tmp_variable(dtype=x.data_type)
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


Y
Yu Yang 已提交
1369
def fill_constant(shape, dtype, value, main_program=None):
1370 1371 1372 1373 1374
    """
    This function creates a tensor , with shape as mentioned in the input and
    specified data_type and fills this up with a constant value that
    comes in the input. It also sets the stop_gradient to be True.
    """
Y
Yang Yu 已提交
1375
    helper = LayerHelper("fill_constant", **locals())
Y
Yu Yang 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'data_type': out.data_type,
            'value': float(value)
        })
    out.stop_gradient = True
    return out


def ones(shape, dtype, main_program=None):
1391 1392 1393 1394
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 1.0.
    """
Y
Yu Yang 已提交
1395 1396 1397 1398
    return fill_constant(value=1.0, **locals())


def zeros(shape, dtype, main_program=None):
1399 1400 1401 1402
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 0.0.
    """
Y
Yu Yang 已提交
1403 1404 1405
    return fill_constant(value=0.0, **locals())


1406
def increment(x, value=1.0, in_place=True, main_program=None):
1407 1408 1409 1410 1411
    """
    This function creates an operator to increment each value in the input
    `x` by an amount: `value` as mentioned in the input parameter. This
    operation is performed in-place by default.
    """
Y
Yu Yang 已提交
1412
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1413
    if not in_place:
1414
        out = helper.create_tmp_variable(dtype=x.data_type)
Y
Yang Yang(Tony) 已提交
1415 1416
    else:
        out = x
Y
Yu Yang 已提交
1417 1418 1419
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1420
        outputs={'Out': [out]},
Y
Yu Yang 已提交
1421
        attrs={'step': value})
Y
Yang Yu 已提交
1422
    return out
Y
Yu Yang 已提交
1423 1424 1425


def array_write(x, i, array=None, main_program=None):
1426 1427 1428 1429
    """
    This function creates an operator to write the data out as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.data_type)
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


Y
Yang Yang(Tony) 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
def create_array(dtype, main_program=None):
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


def less_than(x, y, cond=None, main_program=None):
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


Y
Yu Yang 已提交
1464
def array_read(array, i, main_program=None):
1465 1466 1467 1468
    """
    This function creates an operator to read the data in as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
    out = helper.create_tmp_variable(dtype=array.data_type)
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1481 1482 1483


def shrink_memory(x, i, table, main_program=None):
1484 1485 1486 1487
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
1488 1489 1490
    helper = LayerHelper('shrink_memory', **locals())
    out = helper.create_tmp_variable(dtype=x.data_type)
    helper.append_op(
Y
Yang Yu 已提交
1491
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1492 1493 1494 1495 1496 1497
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1498 1499 1500


def array_length(array, main_program=None):
1501 1502 1503 1504
    """
    This function creates an operator to find the length of the
    LOD_TENSOR_ARRAY.
    """
Y
Yang Yu 已提交
1505 1506 1507 1508 1509 1510
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580


class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
    def __init__(self, inputs, name=None, main_program=None):
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
        self.helper = LayerHelper(
            'conditional_block', name=name, main_program=main_program)

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
            parent_block.var(each_name) for each_name in params
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
            if var_name not in intermediate
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
            attrs={'block': inside_block})