config_parser.py 135.7 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
106
print = logger.info
Z
zhangjinchao01 已提交
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
111

Z
zhangjinchao01 已提交
112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
X
xuwei06 已提交
129
        g_parameter_initializer_map={},
Q
qijun 已提交
130
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141
        g_add_submodel_suffix=False, ):
Z
zhangjinchao01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
158

Z
zhangjinchao01 已提交
159 160
g_config_funcs = {}

Q
qijun 已提交
161

Z
zhangjinchao01 已提交
162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
167

Z
zhangjinchao01 已提交
168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
173

Z
zhangjinchao01 已提交
174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
180

Z
zhangjinchao01 已提交
181 182
    return wrap

Q
qijun 已提交
183

Z
zhangjinchao01 已提交
184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
187

Z
zhangjinchao01 已提交
188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
191

Z
zhangjinchao01 已提交
192 193 194
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
195

Z
zhangjinchao01 已提交
196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
202

Z
zhangjinchao01 已提交
203 204
# functions available in config file

Q
qijun 已提交
205

Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
263

Z
zhangjinchao01 已提交
264
@config_func
Q
qijun 已提交
265
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
269
    if name is not None:
Q
qijun 已提交
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
273 274 275

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
276

Z
zhangjinchao01 已提交
277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
281 282
    return name + suffix

Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
289 290
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
298

Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330 331
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
    in_links_count = 0
332
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
333 334 335 336
        if isinstance(link, basestring):
            name = link
        else:
            name = link.link_name
337

Z
zhangjinchao01 已提交
338 339 340
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
341 342
        ScatterAgentLayer(
            name=name, size=layer.size, width=layer.width, height=layer.height)
343

Z
zhangjinchao01 已提交
344 345 346 347
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)

Q
qijun 已提交
348

Z
zhangjinchao01 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
    else:
        name = link.link_name
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
362
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
363 364 365 366 367 368 369 370
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
371
                             target_inlinkname="",
Z
zhangjinchao01 已提交
372
                             seq_reversed=False):
373
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed)
Z
zhangjinchao01 已提交
374 375 376 377 378
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
379 380 381 382 383
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
384 385 386 387 388 389 390


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
391
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
392
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
393 394
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
411

Z
zhangjinchao01 已提交
412 413 414 415 416 417
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
418

Z
zhangjinchao01 已提交
419 420
@config_class
class Bias(Cfg):
X
xuwei06 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    def __init__(self,
                 parameter_name=None,
                 learning_rate=None,
                 momentum=None,
                 decay_rate=None,
                 decay_rate_l1=None,
                 initial_mean=None,
                 initial_std=None,
                 initial_strategy=None,
                 initial_smart=None,
                 num_batches_regularization=None,
                 sparse_remote_update=None,
                 gradient_clipping_threshold=None,
                 is_static=None,
                 is_shared=None,
                 initializer=None):
Z
zhangjinchao01 已提交
437 438
        self.add_keys(locals())

Q
qijun 已提交
439

Z
zhangjinchao01 已提交
440 441 442 443 444 445 446
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
X
xuwei06 已提交
447
            initializer=None,
Z
zhangjinchao01 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
461
            bilinear_interp=None,
Z
zhangjinchao01 已提交
462 463 464 465
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
466
            maxout=None,
Q
qijun 已提交
467
            spp=None,
D
dangqingqing 已提交
468
            pad=None,
Z
zhangjinchao01 已提交
469 470 471 472 473
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
474
            input_layer_argument=None,
D
dangqingqing 已提交
475 476 477 478 479
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
Z
zhangjinchao01 已提交
480
        self.add_keys(locals())
D
dangqingqing 已提交
481 482 483
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
Z
zhangjinchao01 已提交
484

Q
qijun 已提交
485

Z
zhangjinchao01 已提交
486 487 488
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
489 490
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
491 492 493
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
494
            size=0,  # projection output size
Z
zhangjinchao01 已提交
495 496 497 498 499 500 501 502 503
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
X
xuwei06 已提交
504
            initializer=None,
Z
zhangjinchao01 已提交
505 506 507 508 509 510 511 512 513 514
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
515
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
529

Z
zhangjinchao01 已提交
530 531
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
532

Z
zhangjinchao01 已提交
533 534 535 536 537 538 539 540 541 542
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
543

Z
zhangjinchao01 已提交
544 545
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
546

Z
zhangjinchao01 已提交
547 548 549
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
550

Z
zhangjinchao01 已提交
551 552 553 554 555 556
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
557 558 559
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
560 561 562 563
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
564

Z
zhangjinchao01 已提交
565 566 567
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
568

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
@config_class
class SliceProjection(Projection):
    type = 'slice'

    def __init__(self, input_layer_name, slices, **xargs):
        super(SliceProjection, self).__init__(input_layer_name, **xargs)
        input = g_layer_map[input_layer_name]
        if input.type in ["exconv", "cudnn_conv"]:
            # the slice operator is for the channel dimension
            assert input.num_filters is not None
            channels = input.num_filters
            image_size = input.size / channels
            assert slices[len(slices) - 1][1] <= channels
            for i in xrange(len(slices)):
                slice = self.proj_conf.slices.add()
                slice.start = slices[i][0] * image_size
                slice.end = slices[i][1] * image_size
                self.size += slice.end - slice.start
        else:
            config_assert(False,
                          'Currently the input should be convolution layer')

    def calc_parameter_size(self, input_size, output_size):
        return 0

    def calc_parameter_dims(self, input_size, output_size):
        return []


Z
zhangjinchao01 已提交
598 599 600 601 602 603 604
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
605

Z
zhangjinchao01 已提交
606 607
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
608

Z
zhangjinchao01 已提交
609 610 611
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

L
Luo Tao 已提交
612

X
xuwei06 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
627

Z
zhangjinchao01 已提交
628 629 630 631 632 633
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
634

Z
zhangjinchao01 已提交
635 636 637
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
638

Z
zhangjinchao01 已提交
639 640 641 642 643 644
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
645

Z
zhangjinchao01 已提交
646 647 648
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
649

Z
zhangjinchao01 已提交
650 651 652 653 654 655
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
656

Z
zhangjinchao01 已提交
657 658 659
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
660

Z
zhangjinchao01 已提交
661 662 663 664
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
665 666
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


690
@config_class
691
class ConvBaseProjection(Projection):
Q
qijun 已提交
692 693 694 695 696
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
697
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
698 699 700 701 702 703 704 705 706 707 708 709

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
710 711
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
712 713 714 715 716 717 718

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
719

720 721 722 723 724 725 726 727 728
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
729 730
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
731

732
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
748 749
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
750 751 752

        parse_conv(
            conv_conf,
753
            self.input_layer_name,
754 755 756 757 758 759 760 761
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


Z
zhangjinchao01 已提交
762 763 764
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
765 766
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
767 768
    def __init__(
            self,
Q
qijun 已提交
769
            input_layer_names, ):
Z
zhangjinchao01 已提交
770 771 772 773 774 775 776 777 778 779
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
780

Z
zhangjinchao01 已提交
781 782 783
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
784 785 786

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
805 806 807 808 809 810 811

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
812 813 814
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

815 816
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
817
                   self.operator_conf.conv_conf, num_filters)
L
Luo Tao 已提交
818 819 820
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
Z
zhangjinchao01 已提交
821 822 823

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

824 825
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
826 827


828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


Z
zhangjinchao01 已提交
858 859 860
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
861 862 863 864
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
865
                 dilation=None,
Q
qijun 已提交
866 867 868 869 870 871 872 873
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
874
                 dilation_y=None,
Q
qijun 已提交
875
                 stride_y=None):
Z
zhangjinchao01 已提交
876 877
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
878
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
879
        if padding_y is None:
Q
qijun 已提交
880
            self.padding_y = padding
881 882
        if dilation_y is None:
            self.dilation_y = dilation
Z
zhangjinchao01 已提交
883
        if stride_y is None:
Q
qijun 已提交
884
            self.stride_y = stride
Z
zhangjinchao01 已提交
885
        if output_x is not None:
Q
qijun 已提交
886 887
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
888

L
liaogang 已提交
889 890
@config_class
class BilinearInterp(Cfg):
L
Luo Tao 已提交
891
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
L
liaogang 已提交
892 893
        self.add_keys(locals())

Q
qijun 已提交
894

Z
zhangjinchao01 已提交
895 896
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
897 898 899 900 901 902 903 904 905 906 907
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
908
        self.add_keys(locals())
Q
qijun 已提交
909 910


Q
qijun 已提交
911
@config_class
Q
qijun 已提交
912
class SpatialPyramidPool(Cfg):
L
Luo Tao 已提交
913
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
914
        self.add_keys(locals())
Z
zhangjinchao01 已提交
915

Q
qijun 已提交
916

D
dangqingqing 已提交
917 918 919 920 921 922
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())


Z
zhangjinchao01 已提交
923 924
@config_class
class Norm(Cfg):
Q
qijun 已提交
925 926 927 928 929 930 931 932 933
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
934 935
        self.add_keys(locals())

Q
qijun 已提交
936

Z
zhangjinchao01 已提交
937 938
@config_class
class Image(Cfg):
Q
qijun 已提交
939
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
940 941
        self.add_keys(locals())

Q
qijun 已提交
942

Z
zhangjinchao01 已提交
943 944
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
945 946 947 948 949 950 951 952 953 954 955 956
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
957 958
        self.add_keys(locals())

Q
qijun 已提交
959

960 961
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
962
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
963 964
        self.add_keys(locals())

Q
qijun 已提交
965

966
def create_data_config_proto(async_load_data=False,
967
                             constant_slots=None,
王益 已提交
968 969 970
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
Z
zhangjinchao01 已提交
971 972 973 974 975 976 977 978
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
979 980
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
981

Q
qijun 已提交
982
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
983 984 985 986 987 988
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
989

Z
zhangjinchao01 已提交
990
@config_func
Q
qijun 已提交
991 992 993 994 995
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
996
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
997 998 999 1000 1001 1002 1003 1004 1005
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
1006

Z
zhangjinchao01 已提交
1007
@config_func
Q
qijun 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1018
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1019 1020
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
1021

Z
zhangjinchao01 已提交
1022 1023 1024
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
1025

Z
zhangjinchao01 已提交
1026 1027 1028
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
1029 1030
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
1031
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
1032 1033 1034 1035
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1060

Z
zhangjinchao01 已提交
1061
@config_func
Q
qijun 已提交
1062 1063 1064 1065 1066 1067 1068
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
1069
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1089

Z
zhangjinchao01 已提交
1090 1091
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1092
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1093 1094 1095 1096 1097
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1098

Z
zhangjinchao01 已提交
1099
@config_func
Q
qijun 已提交
1100 1101 1102 1103 1104 1105 1106
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1107

1108
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1142

L
Luo Tao 已提交
1143 1144
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1145 1146 1147 1148 1149 1150 1151
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1152

1153
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
L
Luo Tao 已提交
1154
#It is the reverse function of cnn_output_size
1155
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
L
Luo Tao 已提交
1156 1157 1158
    img_size = (output_size - 1) * stride + filter_size - 2 * padding
    if not caffe_mode:
        img_size = img_size + 1
1159 1160
    return img_size

Q
qijun 已提交
1161

L
Luo Tao 已提交
1162
def get_img_size(input_layer_name, channels):
L
Luo Tao 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1181
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
Z
zhangjinchao01 已提交
1182
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1183 1184 1185
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
Z
zhangjinchao01 已提交
1186
                  "['max-projection', 'avg-projection', "
Q
qijun 已提交
1187
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1188 1189 1190 1191 1192 1193

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1194
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1195

L
Luo Tao 已提交
1196
    pool_conf.img_size, pool_conf.img_size_y = \
L
Luo Tao 已提交
1197
        get_img_size(input_layer_name, pool.channels)
Z
zhangjinchao01 已提交
1198

1199
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1200

1201
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1202
        pool_conf.padding = pool.padding
1203
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1204 1205
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1206
                                         not ceil_mode)
D
dangqingqing 已提交
1207 1208
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1209
                                         pool_conf.stride_y, not ceil_mode)
Q
qijun 已提交
1210

Z
zhangjinchao01 已提交
1211

Q
qijun 已提交
1212
def parse_spp(spp, input_layer_name, spp_conf):
L
Luo Tao 已提交
1213
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1214 1215
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1216 1217
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1218
    spp_conf.pyramid_height = spp.pyramid_height
Q
qijun 已提交
1219

Q
qijun 已提交
1220

Z
zhangjinchao01 已提交
1221 1222
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
L
Luo Tao 已提交
1223
    image_conf.img_size, image_conf.img_size_y = \
L
Luo Tao 已提交
1224
        get_img_size(input_layer_name, image_conf.channels)
Q
qijun 已提交
1225

Z
zhangjinchao01 已提交
1226 1227 1228

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1229 1230 1231 1232 1233
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
Z
zhangjinchao01 已提交
1234 1235 1236 1237 1238 1239
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

L
Luo Tao 已提交
1240
    norm_conf.img_size, norm_conf.img_size_y = \
L
Luo Tao 已提交
1241
        get_img_size(input_layer_name, norm.channels)
Z
zhangjinchao01 已提交
1242
    norm_conf.output_x = norm_conf.img_size
L
Luo Tao 已提交
1243
    norm_conf.output_y = norm_conf.img_size_y
Z
zhangjinchao01 已提交
1244 1245 1246
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1247 1248
        norm_conf.scale /= norm.size**2

1249

L
Luo Tao 已提交
1250 1251
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1252
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
Q
qijun 已提交
1262

1263
    if not trans:
1264
        conv_conf.filter_channels = conv.channels / conv.groups
L
Luo Tao 已提交
1265
        conv_conf.img_size, conv_conf.img_size_y = \
L
Luo Tao 已提交
1266
            get_img_size(input_layer_name, conv.channels)
1267
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1268 1269
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1270 1271 1272
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1273
    else:
1274
        conv_conf.filter_channels = num_filters / conv.groups
L
Luo Tao 已提交
1275
        conv_conf.output_x, conv_conf.output_y = \
L
Luo Tao 已提交
1276
            get_img_size(input_layer_name, conv.channels)
1277
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1278 1279
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1280
        conv_conf.img_size_y = cnn_image_size(
L
Luo Tao 已提交
1281 1282
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
Q
qijun 已提交
1283

1284

Z
zhangjinchao01 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1298
        block_expand_conf.output_x = cnn_output_size(
1299
            block_expand.img_size_x, block_expand.block_x,
1300
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1301 1302

    if block_expand_conf.img_size_y == 0:
1303
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1304
    else:
1305
        block_expand_conf.output_y = cnn_output_size(
1306
            block_expand.img_size_y, block_expand.block_y,
1307
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1308

Q
qijun 已提交
1309

1310
def parse_maxout(maxout, input_layer_name, maxout_conf):
L
Luo Tao 已提交
1311
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1312
    maxout_conf.groups = maxout.groups
1313

Q
qijun 已提交
1314

Z
zhangjinchao01 已提交
1315 1316
# Define an evaluator
@config_func
Y
yangyaming 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
def Evaluator(name,
              type,
              inputs,
              chunk_scheme=None,
              num_chunk_types=None,
              classification_threshold=None,
              positive_label=None,
              dict_file=None,
              result_file=None,
              num_results=None,
              top_k=None,
              delimited=None,
              excluded_chunk_types=None,
              overlap_threshold=None,
              background_id=None,
              evaluate_difficult=None,
              ap_type=None):
Z
zhangjinchao01 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
L
Liang Zhao 已提交
1359 1360
    if top_k is not None:
        evaluator.top_k = top_k
1361 1362
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1363

1364 1365 1366
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Y
yangyaming 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
    if overlap_threshold is not None:
        evaluator.overlap_threshold = overlap_threshold

    if background_id is not None:
        evaluator.background_id = background_id

    if evaluate_difficult is not None:
        evaluator.evaluate_difficult = evaluate_difficult

    if ap_type is not None:
        evaluator.ap_type = ap_type

Q
qijun 已提交
1379

Z
zhangjinchao01 已提交
1380 1381 1382 1383 1384
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1385
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1386 1387 1388 1389
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
C
caoying03 已提交
1390 1391
            coeff=None,
            error_clipping_threshold=None):
Z
zhangjinchao01 已提交
1392
        config_assert('@' not in name,
Q
qijun 已提交
1393
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1409
        assert isinstance(self.config, LayerConfig)
Z
zhangjinchao01 已提交
1410 1411 1412
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1413 1414
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1415 1416 1417 1418 1419 1420 1421
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1422
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1423 1424
            self.config.device = g_default_device

C
caoying03 已提交
1425 1426 1427
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold

Z
zhangjinchao01 已提交
1428 1429 1430 1431 1432 1433 1434
        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1435 1436
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1437 1438 1439 1440 1441 1442 1443 1444
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1445
                self.operators.append(input)
Z
zhangjinchao01 已提交
1446 1447 1448 1449
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1450
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1451
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1452 1453
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1471
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1472
            size,
Q
qijun 已提交
1473 1474 1475
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1476 1477 1478 1479 1480 1481

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1482 1483 1484
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1494 1495
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1496 1497 1498
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1499 1500
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1512 1513
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1514
                    is_static=bias.is_static,
X
xuwei06 已提交
1515 1516
                    is_shared=bias.is_shared,
                    initializer=bias.initializer)
Z
zhangjinchao01 已提交
1517 1518 1519 1520 1521
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1522 1523 1524 1525 1526 1527
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1542 1543
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1544 1545
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1546 1547
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1548 1549 1550 1551 1552 1553
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1554
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1567 1568
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1569 1570 1571 1572
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
X
xuwei06 已提交
1573 1574
            update_hooks=input_config.update_hooks,
            initializer=input_config.initializer)
Z
zhangjinchao01 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

L
Luo Tao 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

Q
qijun 已提交
1601

Z
zhangjinchao01 已提交
1602 1603
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1604 1605 1606
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1607 1608
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1609

Z
zhangjinchao01 已提交
1610 1611
@config_layer('fc')
class FCLayer(LayerBase):
T
tensor-tang 已提交
1612 1613
    layer_type = 'fc'

L
lianxiaochen 已提交
1614 1615 1616 1617 1618 1619 1620
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
T
tensor-tang 已提交
1621
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
1622 1623
        use_mkldnn_wgt = bool(
            int(g_command_config_args.get("use_mkldnn_wgt", 0)))
T
tensor-tang 已提交
1624 1625 1626 1627 1628 1629 1630
        if use_mkldnn:
            self.layer_type = 'mkldnn_fc'
            config_assert(
                len(inputs) == 1,
                "MkldnnFCLayer support one and only one input!")
        super(FCLayer, self).__init__(
            name, self.layer_type, size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1631 1632 1633
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
T
tensor-tang 已提交
1634
            dims = [input_layer.size, self.config.size]
Z
zhangjinchao01 已提交
1635 1636
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
T
tensor-tang 已提交
1637 1638 1639
            if use_mkldnn:
                config_assert(not sparse,
                              "MkldnnFCLayer do not support sparse format yet")
T
tensor-tang 已提交
1640 1641
                if use_mkldnn_wgt:
                    dims = [self.config.size, input_layer.size]
Z
zhangjinchao01 已提交
1642 1643
            if sparse:
                psize = self.inputs[input_index].nnz
1644 1645
            else:
                sparse = None
Z
zhangjinchao01 已提交
1646

Q
qijun 已提交
1647 1648
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1649
        self.create_bias_parameter(bias, self.config.size)
L
lianxiaochen 已提交
1650 1651
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
1652

Q
qijun 已提交
1653

T
tensor-tang 已提交
1654 1655 1656 1657 1658
@config_layer('mkldnn_fc')
class MkldnnFcLayer(FCLayer):
    layer_type = 'mkldnn_fc'


Z
zhangjinchao01 已提交
1659 1660
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1691 1692
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1705 1706
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1707 1708
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1709

1710 1711
@config_layer('print')
class PrintLayer(LayerBase):
1712
    def __init__(self, name, inputs, format=None):
1713
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)
1714 1715 1716 1717 1718 1719
        if format is None:
            format = "\n".join([
                "layer=" + input.input_layer_name + " %s"
                for input in self.inputs
            ])
        self.config.user_arg = format
1720

Q
qijun 已提交
1721

Y
yuan 已提交
1722 1723
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1724 1725
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1726
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
G
gaoyuan 已提交
1727
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1728 1729 1730 1731 1732 1733 1734
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
G
gaoyuan 已提交
1735
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1736 1737 1738 1739 1740 1741
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

Q
qijun 已提交
1742

1743 1744 1745
@config_layer('multibox_loss')
class MultiBoxLossLayer(LayerBase):
    def __init__(self, name, inputs, input_num, num_classes, overlap_threshold,
1746
                 neg_pos_ratio, neg_overlap, background_id, **xargs):
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
        super(MultiBoxLossLayer, self).__init__(name, 'multibox_loss', 0,
                                                inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 2),
            'MultiBoxLossLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].multibox_loss_conf.num_classes = num_classes
        self.config.inputs[
            0].multibox_loss_conf.overlap_threshold = overlap_threshold
        self.config.inputs[0].multibox_loss_conf.neg_pos_ratio = neg_pos_ratio
        self.config.inputs[0].multibox_loss_conf.neg_overlap = neg_overlap
        self.config.inputs[0].multibox_loss_conf.background_id = background_id
        self.config.inputs[0].multibox_loss_conf.input_num = input_num
        self.config.size = 1


@config_layer('detection_output')
class DetectionOutputLayer(LayerBase):
    def __init__(self, name, inputs, size, input_num, num_classes,
                 nms_threshold, nms_top_k, keep_top_k, confidence_threshold,
1768
                 background_id, **xargs):
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
        super(DetectionOutputLayer, self).__init__(name, 'detection_output', 0,
                                                   inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 1),
            'DetectionOutputLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].detection_output_conf.num_classes = num_classes
        self.config.inputs[
            0].detection_output_conf.nms_threshold = nms_threshold
        self.config.inputs[0].detection_output_conf.nms_top_k = nms_top_k
        self.config.inputs[0].detection_output_conf.keep_top_k = keep_top_k
        self.config.inputs[
            0].detection_output_conf.confidence_threshold = confidence_threshold
        self.config.inputs[
            0].detection_output_conf.background_id = background_id
        self.config.inputs[0].detection_output_conf.input_num = input_num
        self.config.size = size


Z
zhangjinchao01 已提交
1789 1790
@config_layer('data')
class DataLayer(LayerBase):
L
Luo Tao 已提交
1791
    def __init__(self, name, size, height=None, width=None, device=None):
Q
qijun 已提交
1792 1793
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
L
Luo Tao 已提交
1794 1795
        if height and width:
            self.set_layer_height_width(height, width)
Q
qijun 已提交
1796

Z
zhangjinchao01 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
1824 1825


Z
zhangjinchao01 已提交
1826 1827
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
1828
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
1840

Z
zhangjinchao01 已提交
1841 1842 1843
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
1844 1845

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
1846 1847 1848
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        input_layer = self.get_input_layer(0)
1849 1850 1851
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
Z
zhangjinchao01 已提交
1852 1853 1854
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

Q
qijun 已提交
1855

Z
zhangjinchao01 已提交
1856 1857 1858
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
1859 1860 1861 1862 1863 1864 1865 1866

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
Q
qijun 已提交
1883
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
L
Luo Tao 已提交
1896 1897
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
Z
zhangjinchao01 已提交
1898 1899
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
L
Luo Tao 已提交
1900 1901
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
Z
zhangjinchao01 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1912

Z
zhangjinchao01 已提交
1913 1914 1915 1916
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
1917

Z
zhangjinchao01 已提交
1918 1919 1920 1921
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

1922 1923 1924 1925

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
1926 1927 1928 1929 1930 1931 1932 1933

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
1934
        super(ConvTransLayerBase, self).__init__(
1935 1936 1937 1938 1939 1940 1941 1942
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
1954 1955 1956 1957 1958 1959 1960 1961
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
1962
            parse_conv(
1963 1964
                self.inputs[input_index].conv,
                input_layer.name,
1965
                self.config.inputs[input_index].conv_conf,
1966
                num_filters,
1967
                trans=True)
1968 1969 1970
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
1971 1972
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
1973 1974 1975 1976 1977 1978 1979

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
1980
        return conv_conf.channels * conv_conf.filter_channels \
1981 1982
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1983

1984 1985 1986 1987
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
1988

1989 1990 1991 1992 1993
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


Z
zhangjinchao01 已提交
1994 1995
@config_layer('norm')
class NormLayer(LayerBase):
1996 1997
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1998 1999 2000
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
L
Luo Tao 已提交
2001 2002 2003 2004
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
2005 2006 2007
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
Q
qijun 已提交
2008

Z
zhangjinchao01 已提交
2009 2010 2011

@config_layer('pool')
class PoolLayer(LayerBase):
2012 2013
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2014 2015 2016
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
L
Luo Tao 已提交
2017
            parse_pool(self.inputs[input_index].pool, input_layer.name,
2018
                       pool_conf, ceil_mode)
L
Luo Tao 已提交
2019 2020
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
Q
qijun 已提交
2021

Z
zhangjinchao01 已提交
2022

Q
qijun 已提交
2023 2024
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
2025
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2026
        super(SpatialPyramidPoolLayer, self).__init__(
2027
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2028 2029 2030
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
L
Luo Tao 已提交
2031 2032 2033
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
2034

Q
qijun 已提交
2035

D
dangqingqing 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


2055 2056
@config_layer('crop')
class CropLayer(LayerBase):
2057
    def __init__(self, name, inputs, axis, offset, shape, **xargs):
2058
        super(CropLayer, self).__init__(name, 'crop', 0, inputs=inputs, **xargs)
2059 2060 2061
        self.config.axis = axis
        self.config.offset.extend(offset)
        self.config.shape.extend(shape)
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].image_conf
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)


Z
zhangjinchao01 已提交
2072 2073 2074
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083

    def __init__(self,
                 name,
                 inputs,
                 bias=True,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
Z
zhangjinchao01 已提交
2084 2085 2086 2087
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
2088 2089
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
2090 2091 2092 2093 2094 2095 2096 2097
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
2098 2099 2100 2101 2102 2103
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
2104
                    is_shared=is_shared,
D
dangqingqing 已提交
2105
                    make_layer_name_in_submodel=False, ))
Z
zhangjinchao01 已提交
2106 2107 2108 2109 2110 2111

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
2112
                ((not parallel_nn) or self.config.device > -1)
Z
zhangjinchao01 已提交
2113
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
Q
qijun 已提交
2114
        super(BatchNormLayer, self).__init__(
X
xuwei06 已提交
2115
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2116 2117 2118 2119 2120 2121

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

Q
qijun 已提交
2122
        input_layer = self.get_input_layer(0)
Z
zhangjinchao01 已提交
2123
        image_conf = self.config.inputs[0].image_conf
L
Luo Tao 已提交
2124
        parse_image(self.inputs[0].image, input_layer.name, image_conf)
2125

2126 2127
        # Only pass the width and height of input to batch_norm layer
        # when either of it is non-zero.
2128 2129
        if input_layer.width != 0 or input_layer.height != 0:
            self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
D
dangqingqing 已提交
2130
                               image_conf.channels, False)
2131 2132
        else:
            self.set_layer_size(input_layer.size)
Z
zhangjinchao01 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
2145

Z
zhangjinchao01 已提交
2146 2147
@config_layer('trans')
class TransLayer(LayerBase):
2148
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2149
        super(TransLayer, self).__init__(
2150
            name, 'trans', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2151 2152 2153
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
2154 2155
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
2156

Z
zhangjinchao01 已提交
2157 2158
@config_layer('resize')
class ResizeLayer(LayerBase):
2159
    def __init__(self, name, size, inputs, **xargs):
Q
qijun 已提交
2160
        super(ResizeLayer, self).__init__(
2161
            name, 'resize', size=size, inputs=inputs, **xargs)
Q
qijun 已提交
2162 2163 2164 2165
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
2166

2167 2168
@config_layer('rotate')
class RotateLayer(LayerBase):
H
Haonan 已提交
2169
    def __init__(self, name, inputs, height, width, device=None):
2170 2171 2172 2173 2174
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
H
Haonan 已提交
2175
        self.set_layer_height_width(height, width)
2176 2177 2178
        self.set_layer_size(self.get_input_layer(0).size)


Z
zhangjinchao01 已提交
2179 2180
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2181
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2182
        super(BlockExpandLayer, self).__init__(
2183
            name, 'blockexpand', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2184 2185
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
2186 2187
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
2188
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
2189 2190 2191 2192 2193 2194
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
2195

2196 2197
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
2198 2199 2200
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2201 2202
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
L
Luo Tao 已提交
2203
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
L
Luo Tao 已提交
2204
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
2205 2206
        self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y,
                           maxout_conf.image_conf.img_size, out_channels)
Q
qijun 已提交
2207

2208

D
dangqingqing 已提交
2209 2210 2211 2212
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
2213
            name, 'row_conv', 0, inputs=inputs, **xargs)
D
dangqingqing 已提交
2214 2215
        config_assert(
            len(self.inputs) == 1,
2216
            'row convolution layer must have one and only one input.')
D
dangqingqing 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


G
guosheng 已提交
2226 2227
@config_layer('clip')
class ClipLayer(LayerBase):
2228 2229
    def __init__(self, name, inputs, min, max, **xargs):
        super(ClipLayer, self).__init__(name, 'clip', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2230 2231
        config_assert(
            len(self.inputs) == 1,
2232 2233
            'ClipLayer must have one and only one input.')
        config_assert(min < max, 'min must be less than max.')
G
guosheng 已提交
2234 2235
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
2236 2237
        self.config.inputs[0].clip_conf.min = min
        self.config.inputs[0].clip_conf.max = max
G
guosheng 已提交
2238 2239


G
guosheng 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
@config_layer('scale_shift')
class ScaleShiftLayer(LayerBase):
    def __init__(self, name, inputs, bias=True, **xargs):
        super(ScaleShiftLayer, self).__init__(
            name, 'scale_shift', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1,
            'ScaleShiftLayer must have one and only one input.')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, 1, [1, 1])
        self.create_bias_parameter(bias, 1)


Z
zhangjinchao01 已提交
2254 2255 2256 2257
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
2258

Z
zhangjinchao01 已提交
2259 2260 2261
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
2262 2263
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
2264

Q
qijun 已提交
2265
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
2266 2267 2268
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
2269

Z
zhangjinchao01 已提交
2270 2271 2272 2273 2274 2275 2276 2277
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
X
xuwei06 已提交
2278
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2279
define_cost('SmoothL1Cost', 'smooth_l1')
Z
zhangjinchao01 已提交
2280

Q
qijun 已提交
2281

Z
zhangjinchao01 已提交
2282 2283
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
2284
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
2285 2286
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
2287 2288 2289
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2290 2291 2292 2293 2294 2295 2296 2297
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
2298

Z
zhangjinchao01 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2323 2324


Z
zhangjinchao01 已提交
2325 2326
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2327
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2328 2329
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2330
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2331 2332
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2333 2334 2335
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2336 2337
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2338

Z
zhangjinchao01 已提交
2339 2340
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2341 2342 2343 2344 2345 2346 2347 2348
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2349
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2350 2351
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2352 2353
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2354 2355 2356 2357
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2358
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2359 2360 2361
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2362 2363 2364 2365 2366

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2367
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2368 2369 2370 2371
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2372 2373
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
Q
qijun 已提交
2387
    def __init__(self, name, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
2388 2389
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2390
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
Z
zhangjinchao01 已提交
2391 2392 2393 2394 2395
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2396

Z
zhangjinchao01 已提交
2397 2398
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2399 2400 2401 2402
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2403 2404 2405

@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2406
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2407 2408 2409
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2410

Z
zhangjinchao01 已提交
2411 2412
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
2413
    def __init__(self, name, size, width=None, height=None, device=None):
Z
zhangjinchao01 已提交
2414 2415
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)
2416 2417
        if height and width:
            self.set_layer_height_width(height, width)
Z
zhangjinchao01 已提交
2418

Q
qijun 已提交
2419

Z
zhangjinchao01 已提交
2420 2421
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2422 2423 2424 2425 2426
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2427
        for i in range(1, len(inputs)):
Q
qijun 已提交
2428 2429 2430 2431 2432
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2433 2434

@config_func
2435 2436 2437 2438
def Link(name, has_subseq=False):
    """
    Still keeping has_subseq for backward compatibility
    """
Z
zhangjinchao01 已提交
2439 2440 2441 2442
    link_config = LinkConfig()
    link_config.link_name = name
    return link_config

Q
qijun 已提交
2443

Z
zhangjinchao01 已提交
2444 2445
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2446 2447 2448 2449
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
Z
zhangjinchao01 已提交
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
2473
    agent_layer = AgentLayer(agent_name, size)
Z
zhangjinchao01 已提交
2474
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2475
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2476
    memory = g_current_submodel.memories.add()
2477 2478
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
2479
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
Q
qijun 已提交
2480
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2481
                   boot_with_const_id is not None))
Q
qijun 已提交
2482 2483 2484 2485
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2486 2487 2488
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2489 2490
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2491 2492 2493
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2494
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2495 2496 2497 2498 2499
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2500

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


Z
zhangjinchao01 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
2523 2524 2525 2526
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
2527 2528 2529 2530 2531 2532 2533 2534 2535
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
2536

Z
zhangjinchao01 已提交
2537 2538
@config_layer('expand')
class ExpandLayer(LayerBase):
2539
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
Q
qijun 已提交
2540
        super(ExpandLayer, self).__init__(
2541
            name, 'expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2542 2543 2544 2545 2546 2547 2548 2549
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
2550 2551 2552

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
X
xuwei06 已提交
2553 2554 2555 2556 2557
    def __init__(self,
                 name,
                 inputs,
                 num_filters=None,
                 as_row_vector=True,
X
xuwei06 已提交
2558 2559
                 bias=False,
                 **xargs):
Q
qijun 已提交
2560
        super(FeatMapExpandLayer, self).__init__(
X
xuwei06 已提交
2561
            name, 'featmap_expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2562 2563 2564
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
2565
            self.config.num_filters = num_filters
Q
qijun 已提交
2566
        else:
Z
zhangjinchao01 已提交
2567
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
X
xuwei06 已提交
2568 2569
        if not as_row_vector:
            self.config.user_arg = "as_col_vec"
Q
qijun 已提交
2570
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
2571 2572 2573 2574


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
2575 2576 2577 2578 2579
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2580
                 output_max_index=None,
2581
                 stride=-1,
2582
                 **xargs):
2583
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2584
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
2585 2586
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
2587
        self.config.trans_type = trans_type
2588
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
2589 2590 2591 2592
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2593 2594
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
2595 2596 2597 2598


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
2599
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
2617
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
2618 2619 2620
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
2621
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
2622 2623
        self.config.eos_id = eos_id

Q
qijun 已提交
2624

Z
zhangjinchao01 已提交
2625 2626
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
2627 2628 2629 2630
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
2631
                 bias=False,
2632
                 stride=-1,
2633
                 **xargs):
Q
qijun 已提交
2634
        super(SequenceLastInstanceLayer, self).__init__(
X
xuwei06 已提交
2635
            name, 'seqlastins', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2636 2637
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
2638
        if trans_type == 'seq':
L
Luo Tao 已提交
2639
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
2640
        self.config.trans_type = trans_type
2641 2642
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
Z
zhangjinchao01 已提交
2643 2644
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2645

Z
zhangjinchao01 已提交
2646 2647
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
2648 2649 2650 2651 2652
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2653
                 stride=-1,
2654
                 **xargs):
Q
qijun 已提交
2655
        super(SequenceFirstInstanceLayer, self).__init__(
2656 2657 2658 2659 2660 2661
            name,
            inputs=inputs,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
Z
zhangjinchao01 已提交
2662 2663
        self.config.select_first = True

Q
qijun 已提交
2664

Z
zhangjinchao01 已提交
2665 2666
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
X
xuwei06 已提交
2667
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
2668
        super(SequenceConcatLayer, self).__init__(
X
xuwei06 已提交
2669
            name, 'seqconcat', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2670 2671
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
2672 2673 2674 2675 2676
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2677

Z
zhangjinchao01 已提交
2678 2679
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
X
xuwei06 已提交
2680
    def __init__(self, name, size, inputs, bias=False, **xargs):
Q
qijun 已提交
2681
        super(SequenceReshapeLayer, self).__init__(
X
xuwei06 已提交
2682
            name, 'seqreshape', size, inputs=inputs, **xargs)
Q
qijun 已提交
2683 2684
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2685 2686 2687
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2688

Z
zhangjinchao01 已提交
2689 2690
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
X
xuwei06 已提交
2691
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
2692
        super(SubSequenceLayer, self).__init__(
X
xuwei06 已提交
2693
            name, 'subseq', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2694 2695 2696 2697 2698 2699
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2700

C
caoying03 已提交
2701 2702
@config_layer('sub_nested_seq')
class SubNestedSequenceLayer(LayerBase):
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
    def __init__(self, name, inputs, selected_indices, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sub_nested_seq '
                                      'layer is a single nested sequence.')
            inputs = inputs[0]
        if isinstance(selected_indices, list):
            assert len(selected_indices) == 1, (
                'the second input of '
                'sub_nested_seq layer is a single layer which is a '
                'set of selected indices.')
            selected_indices = selected_indices[0]

C
caoying03 已提交
2715
        super(SubNestedSequenceLayer, self).__init__(
2716 2717 2718 2719 2720
            name,
            'sub_nested_seq',
            0,
            inputs=[inputs, selected_indices],
            **xargs)
C
caoying03 已提交
2721 2722 2723 2724 2725
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)


Z
zhangjinchao01 已提交
2726 2727
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
2728 2729 2730
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2731 2732 2733 2734 2735
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
2736

Z
zhangjinchao01 已提交
2737 2738
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
2739 2740 2741
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2742 2743 2744 2745
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2746 2747 2748
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
2749 2750 2751

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
2752 2753 2754
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2755 2756 2757 2758 2759 2760
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2761

Z
zhangjinchao01 已提交
2762 2763
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
2764 2765 2766
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2767 2768 2769 2770
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2771 2772 2773
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
2774 2775 2776

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
2777 2778 2779
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2780 2781 2782 2783
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2784

Z
zhangjinchao01 已提交
2785 2786
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
2787
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
2788
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
2789 2790 2791
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
2792 2793 2794
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
2795 2796
        self.set_layer_size(size)

Q
qijun 已提交
2797

Z
zhangjinchao01 已提交
2798 2799
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
2800
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2801 2802
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
2803 2804
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
2805 2806 2807 2808 2809 2810 2811 2812
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
2813

L
liaogang 已提交
2814 2815
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
2816
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
2817
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
2818
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
2819
        input_layer = self.get_input_layer(0)
L
Luo Tao 已提交
2820 2821 2822 2823
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
Q
qijun 已提交
2824

L
liaogang 已提交
2825

Z
zhangjinchao01 已提交
2826 2827
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
2828
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2829
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
2830 2831 2832
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
2833 2834 2835
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2836

G
guosheng 已提交
2837 2838
@config_layer('row_l2_norm')
class RowL2NormLayer(LayerBase):
2839
    def __init__(self, name, inputs, **xargs):
G
guosheng 已提交
2840
        super(RowL2NormLayer, self).__init__(
2841
            name, 'row_l2_norm', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2842
        config_assert(len(self.inputs) == 1, 'RowL2NormLayer must have 1 input')
2843 2844
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
G
guosheng 已提交
2845 2846


Z
zhangjinchao01 已提交
2847 2848
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
2849
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
2850
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
2851
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2852
        self.config.cos_scale = cos_scale
Q
qijun 已提交
2853 2854
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
2855 2856 2857
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
2858

Q
qijun 已提交
2859

Z
zhangjinchao01 已提交
2860 2861
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
2862
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2863 2864
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
2865 2866
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
2879 2880 2881 2882 2883
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
2884
                 bias=False,
2885
                 stride=-1,
2886
                 **xargs):
Q
qijun 已提交
2887
        super(AverageLayer, self).__init__(
X
xuwei06 已提交
2888
            name, 'average', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2889
        self.config.average_strategy = average_strategy
2890 2891
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
2892
        self.config.trans_type = trans_type
2893
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
2894 2895 2896 2897 2898 2899
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2900

Z
zhangjinchao01 已提交
2901 2902
@config_layer('cos')
class CosSimLayer(LayerBase):
2903
    def __init__(self, name, inputs, cos_scale=1, device=None):
Z
zhangjinchao01 已提交
2904 2905 2906 2907 2908 2909
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
2910
        self.config.cos_scale = cos_scale
Z
zhangjinchao01 已提交
2911 2912 2913 2914


@config_layer('tensor')
class TensorLayer(LayerBase):
2915
    def __init__(self, name, size, inputs, bias=True, **xargs):
Q
qijun 已提交
2916
        super(TensorLayer, self).__init__(
2917
            name, 'tensor', size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2918 2919
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
2920 2921
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
C
caoying03 已提交
2932
    def __init__(self, name, inputs, size=0, bias=True, **xargs):
Z
zhangjinchao01 已提交
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
2950
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2951 2952 2953
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
2954
            else:
2955 2956
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
2957 2958 2959 2960
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2961 2962 2963 2964
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
2965 2966 2967
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
2968
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
2969 2970 2971
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
2972
            elif isinstance(input, Projection):
Q
qijun 已提交
2973 2974 2975 2976 2977 2978
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
2990 2991
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

3003 3004 3005 3006 3007 3008
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
3009

3010 3011 3012
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
3013

Q
qijun 已提交
3014

Z
zhangjinchao01 已提交
3015 3016
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
3017
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
3018 3019
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
3020

Z
zhangjinchao01 已提交
3021 3022
@config_layer('concat')
class ConcatenateLayer(LayerBase):
Q
qijun 已提交
3023
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3024
        config_assert(inputs, 'inputs cannot be empty')
3025
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
3026 3027 3028 3029 3030 3031
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
3032
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3033 3034 3035 3036
                size += input_layer.size

        self.set_layer_size(size)

Q
qijun 已提交
3037

Z
zhangjinchao01 已提交
3038 3039 3040
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
3041
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3042 3043 3044
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
3045 3046

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
3047 3048 3049 3050 3051 3052
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
3053

Z
zhangjinchao01 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
3074
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3075
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
3076
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3077 3078
            self.create_input_parameter(input_index, psize, dims)

3079 3080 3081 3082 3083 3084 3085
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

3086 3087 3088
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3089

Q
qijun 已提交
3090

Z
zhangjinchao01 已提交
3091 3092
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
3093
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
3094 3095
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
3096 3097 3098 3099 3100 3101 3102 3103 3104
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3105

Z
zhangjinchao01 已提交
3106 3107
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
3108 3109 3110 3111 3112 3113 3114 3115
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
3116 3117 3118 3119 3120 3121 3122 3123
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3124
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3125 3126 3127 3128 3129
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
3130

Z
zhangjinchao01 已提交
3131 3132
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
3143 3144 3145
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3146 3147 3148 3149 3150
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3151 3152 3153
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3154

Z
zhangjinchao01 已提交
3155 3156 3157
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
3158 3159 3160 3161
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3162 3163 3164 3165
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
3166

Z
zhangjinchao01 已提交
3167 3168
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
3169 3170 3171 3172 3173 3174 3175 3176
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3177 3178
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
3179 3180 3181 3182
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3183 3184
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
3185
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
3186
        self.set_layer_size(size)
Q
qijun 已提交
3187
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3188 3189 3190
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3191 3192
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
3193
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
3194 3195
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
3196 3197 3198

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
3210 3211 3212 3213 3214 3215
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3216
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3217 3218 3219
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3220

Z
zhangjinchao01 已提交
3221 3222
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
3223 3224 3225 3226 3227 3228 3229
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3230 3231
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
3232 3233 3234
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3235 3236 3237 3238 3239
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
H
Haonan 已提交
3240
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
Z
zhangjinchao01 已提交
3241 3242
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3243

Z
zhangjinchao01 已提交
3244 3245 3246 3247 3248 3249 3250
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
3251 3252


Z
zhangjinchao01 已提交
3253 3254
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
3255
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
3256
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
3257 3258
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3259
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3260 3261
        self.config.coeff = coeff

Q
qijun 已提交
3262

Z
zhangjinchao01 已提交
3263 3264 3265 3266 3267 3268 3269 3270
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
3271 3272


Z
zhangjinchao01 已提交
3273 3274
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
3275
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3276 3277 3278 3279 3280
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3281
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3282

Q
qijun 已提交
3283

Z
zhangjinchao01 已提交
3284 3285
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
3286
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
3287 3288 3289 3290
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
3291

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
@config_layer('kmax_seq_score')
class KmaxSeqScoreLayer(LayerBase):
    def __init__(self, name, inputs, beam_size, **xargs):
        super(KmaxSeqScoreLayer, self).__init__(
            name, 'kmax_seq_score', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'KmaxSeqScoreLayer has only one input.')
        self.config.beam_size = beam_size


3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3323 3324
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3325
    def __init__(self, name, device=None):
Z
zhangjinchao01 已提交
3326 3327 3328 3329 3330 3331
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3332
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3333 3334 3335 3336
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3337
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3338
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3339

Q
qijun 已提交
3340

Z
zhangjinchao01 已提交
3341
@config_func
Q
qijun 已提交
3342
def ParameterHook(type, **kwargs):
3343
    if type == 'pruning':
Z
zhangjinchao01 已提交
3344 3345
        hook = ParameterUpdaterHookConfig()
        hook.type = type
X
xzl 已提交
3346
        sparsity_ratio = kwargs.get('sparsity_ratio', None)
X
xzl 已提交
3347 3348
        if sparsity_ratio is not None:
            hook.sparsity_ratio = sparsity_ratio
Z
zhangjinchao01 已提交
3349
        return hook
3350 3351 3352 3353
    elif type == 'dpruning':
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        return hook
Z
zhangjinchao01 已提交
3354 3355 3356 3357 3358
    else:
        return None


@config_func
Q
qijun 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
X
xuwei06 已提交
3380 3381
              update_hooks=None,
              initializer=None):
Z
zhangjinchao01 已提交
3382 3383 3384 3385 3386 3387 3388

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3400 3401
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3402 3403 3404 3405 3406

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3407 3408 3409 3410
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3411

Q
qijun 已提交
3412 3413
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3414 3415 3416
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3417 3418 3419 3420 3421 3422
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3423 3424
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3425 3426
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3427 3428
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
3429 3430 3431 3432 3433 3434
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
3435 3436 3437
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
3438 3439 3440 3441
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3442 3443 3444 3445 3446 3447 3448

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3449 3450 3451 3452
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3453 3454
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3455 3456 3457 3458 3459

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
X
xzl 已提交
3460
            update_hooks = update_hooks()
Z
zhangjinchao01 已提交
3461 3462 3463 3464 3465

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
X
xzl 已提交
3466
            para.update_hooks.extend([update_hooks])
Z
zhangjinchao01 已提交
3467 3468

    g_parameter_map[name] = para
X
xuwei06 已提交
3469 3470 3471 3472 3473
    if initializer is not None:
        config_assert(
            callable(initializer),
            "parameter initializer should be a callable object")
        g_parameter_initializer_map[name] = initializer
Z
zhangjinchao01 已提交
3474 3475 3476 3477 3478 3479 3480


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
3481

Z
zhangjinchao01 已提交
3482 3483 3484 3485 3486
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
3487

Z
zhangjinchao01 已提交
3488 3489 3490 3491 3492
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
3493

Z
zhangjinchao01 已提交
3494 3495 3496 3497 3498
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
3499

Z
zhangjinchao01 已提交
3500 3501 3502 3503 3504
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
3505

Z
zhangjinchao01 已提交
3506 3507 3508 3509 3510
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
3511

Z
zhangjinchao01 已提交
3512 3513 3514 3515 3516
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
3517

Z
zhangjinchao01 已提交
3518 3519 3520 3521 3522
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
3523

Z
zhangjinchao01 已提交
3524 3525 3526 3527 3528
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
3529

Z
zhangjinchao01 已提交
3530 3531 3532 3533 3534
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
3535

Z
zhangjinchao01 已提交
3536 3537 3538 3539 3540
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
3541

Z
zhangjinchao01 已提交
3542 3543 3544 3545 3546
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
3547 3548 3549
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
3550 3551
    return Import

Q
qijun 已提交
3552

X
xuwei06 已提交
3553
DEFAULT_SETTING = dict(
Z
zhangjinchao01 已提交
3554 3555 3556 3557 3558
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
3559
    gradient_clipping_threshold=None,
Z
zhangjinchao01 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
3582 3583 3584
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
3585

X
xuwei06 已提交
3586
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
3587

Q
qijun 已提交
3588
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
3589 3590 3591 3592

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
3593 3594
    start_pass=0, )

Z
zhangjinchao01 已提交
3595 3596 3597 3598 3599

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
3600 3601
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
3613

Z
zhangjinchao01 已提交
3614 3615 3616 3617
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
3618

Z
zhangjinchao01 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
3628

Z
zhangjinchao01 已提交
3629 3630 3631 3632
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
3633

Z
zhangjinchao01 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
3649
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
3650 3651 3652 3653 3654

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
3655

Z
zhangjinchao01 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
3672

Z
zhangjinchao01 已提交
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
3685

Z
zhangjinchao01 已提交
3686 3687 3688 3689
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
3690

3691
_parse_config_hooks = set()
Y
Yu Yang 已提交
3692 3693


3694 3695 3696 3697 3698 3699 3700
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
Q
qijun 已提交
3701

Y
Yu Yang 已提交
3702

3703
def update_g_config():
Z
zhangjinchao01 已提交
3704
    '''
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


3728
def begin_parse():
Z
zhangjinchao01 已提交
3729
    init_config_environment()
3730 3731
    for hook in _parse_config_hooks:
        hook()
Z
zhangjinchao01 已提交
3732 3733 3734 3735 3736

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
3746 3747 3748 3749
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
3750

3751
    begin_parse()
X
xuwei06 已提交
3752 3753
    config_args = {}

Z
zhangjinchao01 已提交
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

3766 3767
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
3768
            make_config_environment("", config_args))
3769
        trainer_config()
H
hanchao 已提交
3770
    else:
3771 3772
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
Z
zhangjinchao01 已提交
3773

3774
    return update_g_config()
Z
zhangjinchao01 已提交
3775 3776


3777
def parse_config_and_serialize(trainer_config, config_arg_str):
Z
zhangjinchao01 已提交
3778
    try:
3779
        config = parse_config(trainer_config, config_arg_str)
Z
zhangjinchao01 已提交
3780 3781 3782 3783 3784 3785
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
3786

Z
zhangjinchao01 已提交
3787 3788 3789 3790 3791 3792 3793 3794
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise