Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
23a8d015
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
23a8d015
编写于
7月 30, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ClipLayer
上级
0973c2c9
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
190 addition
and
97 deletion
+190
-97
paddle/gserver/layers/ClipLayer.cpp
paddle/gserver/layers/ClipLayer.cpp
+78
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+15
-0
paddle/math/BaseMatrix.cu
paddle/math/BaseMatrix.cu
+6
-0
paddle/math/BaseMatrix.h
paddle/math/BaseMatrix.h
+7
-0
proto/ModelConfig.proto
proto/ModelConfig.proto
+6
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+17
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+61
-97
未找到文件。
paddle/gserver/layers/ClipLayer.cpp
0 → 100644
浏览文件 @
23a8d015
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Layer.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* A layer for clipping the input value by the threshold.
* \f[
* out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)
* \f]
*/
class
ClipLayer
:
public
Layer
{
protected:
real
clipThresholdLow_
;
real
clipThresholdHigh_
;
public:
explicit
ClipLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
)
override
;
};
REGISTER_LAYER
(
clip
,
ClipLayer
);
bool
ClipLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
Layer
::
init
(
layerMap
,
parameterMap
);
CHECK_EQ
(
inputLayers_
.
size
(),
1U
);
auto
layerConf
=
config_
.
inputs
(
0
).
clip_conf
();
clipThresholdLow_
=
layerConf
.
clip_threshold_low
();
clipThresholdHigh_
=
layerConf
.
clip_threshold_high
();
CHECK_LT
(
clipThresholdLow_
,
clipThresholdHigh_
);
return
true
;
}
void
ClipLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
MatrixPtr
inV
=
getInputValue
(
0
);
resetOutput
(
inV
->
getHeight
(),
inV
->
getWidth
());
MatrixPtr
outV
=
getOutputValue
();
outV
->
copyFrom
(
*
inV
);
outV
->
clip
(
clipThresholdLow_
,
clipThresholdHigh_
);
}
void
ClipLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
MatrixPtr
inV
=
getInputValue
(
0
);
MatrixPtr
inG
=
getInputGrad
(
0
);
MatrixPtr
outV
=
getOutputValue
();
MatrixPtr
outG
=
getOutputGrad
();
MatrixPtr
tmpMtx
;
Matrix
::
resizeOrCreate
(
tmpMtx
,
outG
->
getHeight
(),
outG
->
getWidth
(),
false
,
useGpu_
);
tmpMtx
->
clipDerivative
(
*
inV
,
clipThresholdLow_
,
clipThresholdHigh_
);
inG
->
addDotMul
(
*
outG
,
*
tmpMtx
,
1
,
1
);
}
}
// namespace paddle
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
23a8d015
...
...
@@ -1879,6 +1879,21 @@ TEST(Layer, CropLayer) {
}
}
TEST
(
Layer
,
ClipLayer
)
{
const
size_t
batchSize
=
128
;
const
size_t
size
=
512
;
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"clip"
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"input"
,
size
,
0
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
ClipConfig
*
layerConf
=
input
->
mutable_clip_conf
();
layerConf
->
set_clip_threshold_low
(
std
::
rand
()
/
(
real
)
RAND_MAX
);
layerConf
->
set_clip_threshold_high
(
std
::
rand
()
/
(
real
)
RAND_MAX
);
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"clip"
,
batchSize
,
false
,
useGpu
,
false
);
}
}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
initMain
(
argc
,
argv
);
...
...
paddle/math/BaseMatrix.cu
浏览文件 @
23a8d015
...
...
@@ -442,6 +442,12 @@ DEFINE_MATRIX_UNARY_PARAMETER_OP(Clip, TWO_PARAMETER,
template
<
class
T
>
void
BaseMatrixT
<
T
>::
clip
(
T
p1
,
T
p2
)
{
applyUnary
(
unary
::
Clip
<
T
>
(
p1
,
p2
));
}
DEFINE_MATRIX_BINARY_PARAMETER_OP
(
ClipDerivative
,
TWO_PARAMETER
,
a
=
b
<
p1
?
0
:
(
b
>
p2
?
0
:
1
));
template
<
class
T
>
void
BaseMatrixT
<
T
>::
clipDerivative
(
BaseMatrixT
&
b
,
T
p1
,
T
p2
)
{
applyBinary
(
binary
::
ClipDerivative
<
T
>
(
p1
,
p2
),
b
);
}
DEFINE_MATRIX_UNARY_PARAMETER_OP
(
BiggerThanScalar
,
ONE_PARAMETER
,
a
=
a
>
p
?
1.0
f
:
0.0
f
);
template
<
class
T
>
...
...
paddle/math/BaseMatrix.h
浏览文件 @
23a8d015
...
...
@@ -488,6 +488,13 @@ public:
*/
void
clip
(
T
p1
,
T
p2
);
/**
* this = b < low ? 0 : 1
*
* this = b > high ? 0 : 1
*/
void
clipDerivative
(
BaseMatrixT
&
b
,
T
p1
,
T
p2
);
/**
* @code
* a = a > p ? 1.0f : 0.0f
...
...
proto/ModelConfig.proto
浏览文件 @
23a8d015
...
...
@@ -289,6 +289,11 @@ message DetectionOutputConfig {
optional
uint32
width
=
9
[
default
=
1
];
}
message
ClipConfig
{
required
float
clip_threshold_low
=
1
;
required
float
clip_threshold_high
=
2
;
}
message
LayerInputConfig
{
required
string
input_layer_name
=
1
;
optional
string
input_parameter_name
=
2
;
...
...
@@ -309,6 +314,7 @@ message LayerInputConfig {
optional
RowConvConfig
row_conv_conf
=
15
;
optional
MultiBoxLossConfig
multibox_loss_conf
=
16
;
optional
DetectionOutputConfig
detection_output_conf
=
17
;
optional
ClipConfig
clip_conf
=
18
;
}
message
LayerConfig
{
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
23a8d015
...
...
@@ -2169,6 +2169,23 @@ class RowConvLayer(LayerBase):
self
.
create_input_parameter
(
0
,
psize
,
dims
)
@
config_layer
(
'clip'
)
class
ClipLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
clip_threshold_low
,
clip_threshold_high
):
super
(
ClipLayer
,
self
).
__init__
(
name
,
'clip'
,
0
,
inputs
=
inputs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'ClipLayer layer must have one and only one input.'
)
config_assert
(
clip_threshold_low
<
clip_threshold_high
,
'clip_threshold_low must be less than clip_threshold_high.'
)
input_layer
=
self
.
get_input_layer
(
0
)
self
.
set_layer_size
(
input_layer
.
size
)
self
.
config
.
inputs
[
0
].
clip_conf
.
clip_threshold_low
=
clip_threshold_low
self
.
config
.
inputs
[
0
].
clip_conf
.
clip_threshold_high
=
clip_threshold_high
# key: cost type
# value: cost class
g_cost_map
=
{}
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
23a8d015
...
...
@@ -31,103 +31,33 @@ except ImportError:
import
copy
__all__
=
[
'full_matrix_projection'
,
'AggregateLevel'
,
'ExpandLevel'
,
'identity_projection'
,
'dotmul_projection'
,
'dotmul_operator'
,
'repeat_layer'
,
'seq_reshape_layer'
,
'table_projection'
,
'mixed_layer'
,
'data_layer'
,
'embedding_layer'
,
'fc_layer'
,
'grumemory'
,
'pooling_layer'
,
'lstmemory'
,
'last_seq'
,
'first_seq'
,
'cos_sim'
,
'hsigmoid'
,
'conv_projection'
,
'mse_cost'
,
'regression_cost'
,
'classification_cost'
,
'LayerOutput'
,
'img_conv_layer'
,
'img_pool_layer'
,
'batch_norm_layer'
,
'img_cmrnorm_layer'
,
'addto_layer'
,
'concat_layer'
,
'seq_concat_layer'
,
'lstm_step_layer'
,
'recurrent_group'
,
'memory'
,
'StaticInput'
,
'expand_layer'
,
'scaling_layer'
,
'scaling_projection'
,
'power_layer'
,
'interpolation_layer'
,
'bilinear_interp_layer'
,
'trans_layer'
,
'rotate_layer'
,
'sum_to_one_norm_layer'
,
'get_output_layer'
,
'LayerType'
,
'context_projection'
,
'beam_search'
,
'maxid_layer'
,
'GeneratedInput'
,
'SubsequenceInput'
,
'gru_step_layer'
,
'gru_step_naive_layer'
,
'recurrent_layer'
,
'BaseGeneratedInput'
,
'conv_operator'
,
'conv_shift_layer'
,
'tensor_layer'
,
'selective_fc_layer'
,
'sampling_id_layer'
,
'slope_intercept_layer'
,
'trans_full_matrix_projection'
,
'linear_comb_layer'
,
'convex_comb_layer'
,
'ctc_layer'
,
'warp_ctc_layer'
,
'crf_layer'
,
'crf_decoding_layer'
,
'nce_layer'
,
'cross_entropy_with_selfnorm'
,
'cross_entropy'
,
'multi_binary_label_cross_entropy'
,
'sum_cost'
,
'rank_cost'
,
'lambda_cost'
,
'huber_cost'
,
'block_expand_layer'
,
'maxout_layer'
,
'out_prod_layer'
,
'printer_layer'
,
'print_layer'
,
'priorbox_layer'
,
'cross_channel_norm_layer'
,
'multibox_loss_layer'
,
'detection_output_layer'
,
'spp_layer'
,
'pad_layer'
,
'eos_layer'
,
'smooth_l1_cost'
,
'layer_support'
,
'multiplex_layer'
,
'row_conv_layer'
,
'dropout_layer'
,
'prelu_layer'
,
'gated_unit_layer'
,
'crop_layer'
,
'full_matrix_projection'
,
'AggregateLevel'
,
'ExpandLevel'
,
'identity_projection'
,
'dotmul_projection'
,
'dotmul_operator'
,
'repeat_layer'
,
'seq_reshape_layer'
,
'table_projection'
,
'mixed_layer'
,
'data_layer'
,
'embedding_layer'
,
'fc_layer'
,
'grumemory'
,
'pooling_layer'
,
'lstmemory'
,
'last_seq'
,
'first_seq'
,
'cos_sim'
,
'hsigmoid'
,
'conv_projection'
,
'mse_cost'
,
'regression_cost'
,
'classification_cost'
,
'LayerOutput'
,
'img_conv_layer'
,
'img_pool_layer'
,
'batch_norm_layer'
,
'img_cmrnorm_layer'
,
'addto_layer'
,
'concat_layer'
,
'seq_concat_layer'
,
'lstm_step_layer'
,
'recurrent_group'
,
'memory'
,
'StaticInput'
,
'expand_layer'
,
'scaling_layer'
,
'scaling_projection'
,
'power_layer'
,
'interpolation_layer'
,
'bilinear_interp_layer'
,
'trans_layer'
,
'rotate_layer'
,
'sum_to_one_norm_layer'
,
'get_output_layer'
,
'LayerType'
,
'context_projection'
,
'beam_search'
,
'maxid_layer'
,
'GeneratedInput'
,
'SubsequenceInput'
,
'gru_step_layer'
,
'gru_step_naive_layer'
,
'recurrent_layer'
,
'BaseGeneratedInput'
,
'conv_operator'
,
'conv_shift_layer'
,
'tensor_layer'
,
'selective_fc_layer'
,
'sampling_id_layer'
,
'slope_intercept_layer'
,
'trans_full_matrix_projection'
,
'linear_comb_layer'
,
'convex_comb_layer'
,
'ctc_layer'
,
'warp_ctc_layer'
,
'crf_layer'
,
'crf_decoding_layer'
,
'nce_layer'
,
'cross_entropy_with_selfnorm'
,
'cross_entropy'
,
'multi_binary_label_cross_entropy'
,
'sum_cost'
,
'rank_cost'
,
'lambda_cost'
,
'huber_cost'
,
'block_expand_layer'
,
'maxout_layer'
,
'out_prod_layer'
,
'printer_layer'
,
'print_layer'
,
'priorbox_layer'
,
'cross_channel_norm_layer'
,
'multibox_loss_layer'
,
'detection_output_layer'
,
'spp_layer'
,
'pad_layer'
,
'eos_layer'
,
'smooth_l1_cost'
,
'layer_support'
,
'multiplex_layer'
,
'row_conv_layer'
,
'dropout_layer'
,
'prelu_layer'
,
'gated_unit_layer'
,
'crop_layer'
,
'clip_layer'
]
...
...
@@ -220,6 +150,7 @@ class LayerType(object):
PRELU
=
'prelu'
CROP_LAYER
=
'crop'
CLIP_LAYER
=
'clip'
@
staticmethod
def
is_layer_type
(
type_name
):
...
...
@@ -6006,3 +5937,36 @@ def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
layer_type
=
LayerType
.
CROP_LAYER
,
parents
=
input
,
size
=
l
.
config
.
size
)
@
wrap_name_default
(
"clip"
)
def
clip_layer
(
input
,
clip_threshold_low
,
clip_threshold_high
,
name
=
None
):
"""
A layer for clipping the input value by the threshold.
.. math::
out[i] = \min\left(\max\left(in[i],p_{1}
\r
ight),p_{2}
\r
ight)
.. code-block:: python
clip = clip_layer(input=input_layer, clip_threshold_low=-10, clip_threshold_high=10)
:param name: The Layer Name.
:type name: basestring
:param input: The input layer.
:type input: LayerOutput.
:param clip_threshold_low: The lower threshold for clipping.
:type clip_threshold_low: float
:param clip_threshold_high: The upper threshold for clipping.
:type clip_threshold_high: float
:return: LayerOutput
"""
Layer
(
name
=
name
,
type
=
LayerType
.
CLIP_LAYER
,
inputs
=
[
input
.
name
],
clip_threshold_low
=
clip_threshold_low
,
clip_threshold_high
=
clip_threshold_high
)
return
LayerOutput
(
name
,
LayerType
.
CLIP_LAYER
,
parents
=
[
input
],
size
=
input
.
size
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录