Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
97c4d23f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
97c4d23f
编写于
5月 26, 2017
作者:
X
xuwei06
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add docs and clean up unused code
上级
0cb8a666
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
91 addition
and
263 deletion
+91
-263
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+2
-2
python/paddle/trainer_config_helpers/config_parser_utils.py
python/paddle/trainer_config_helpers/config_parser_utils.py
+1
-2
python/paddle/v2/config_base.py
python/paddle/v2/config_base.py
+48
-199
python/paddle/v2/evaluator.py
python/paddle/v2/evaluator.py
+3
-2
python/paddle/v2/inference.py
python/paddle/v2/inference.py
+12
-12
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+19
-19
python/paddle/v2/tests/test_rnn_layer.py
python/paddle/v2/tests/test_rnn_layer.py
+3
-1
python/paddle/v2/topology.py
python/paddle/v2/topology.py
+3
-26
未找到文件。
python/paddle/trainer/config_parser.py
浏览文件 @
97c4d23f
...
...
@@ -3371,7 +3371,7 @@ def make_importer(config_dir, config_args):
return
Import
default_settings
=
dict
(
DEFAULT_SETTING
=
dict
(
batch_size
=
None
,
mini_batch_size
=
None
,
algorithm
=
'async_sgd'
,
...
...
@@ -3404,7 +3404,7 @@ default_settings = dict(
adam_beta2
=
0.999
,
adam_epsilon
=
1e-8
,
)
settings
=
copy
.
deepcopy
(
default_settings
)
settings
=
copy
.
deepcopy
(
DEFAULT_SETTING
)
settings_deprecated
=
dict
(
usage_ratio
=
1.
,
)
...
...
python/paddle/trainer_config_helpers/config_parser_utils.py
浏览文件 @
97c4d23f
...
...
@@ -15,7 +15,6 @@
import
copy
import
paddle.trainer.config_parser
as
config_parser
from
paddle.proto.TrainerConfig_pb2
import
OptimizationConfig
'''
This file is a wrapper of formal config_parser. The main idea of this file is to
separete different config logic into different function, such as network configuration
...
...
@@ -38,7 +37,7 @@ def parse_network_config(network_conf, config_arg_str=''):
def
parse_optimizer_config
(
optimizer_conf
,
config_arg_str
=
''
):
config_parser
.
settings
=
copy
.
deepcopy
(
config_parser
.
default_settings
)
config_parser
.
settings
=
copy
.
deepcopy
(
config_parser
.
DEFAULT_SETTING
)
optimizer_conf
()
opt_config
=
OptimizationConfig
()
for
k
,
v
in
config_parser
.
settings
.
iteritems
():
...
...
python/paddle/v2/config_base.py
浏览文件 @
97c4d23f
...
...
@@ -14,206 +14,55 @@
import
collections
import
re
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
import
paddle.trainer_config_helpers
as
conf_helps
from
topology
import
Topology
class
LayerType
(
type
):
def
__new__
(
cls
,
name
,
bases
,
attrs
):
method_name
=
attrs
.
get
(
'METHOD_NAME'
,
None
)
if
method_name
is
not
None
:
method
=
getattr
(
conf_helps
,
method_name
)
if
method
.
__doc__
is
not
None
:
mapper
=
attrs
.
get
(
"__map_docstr__"
,
None
)
if
mapper
is
not
None
:
attrs
[
'__doc__'
]
=
LayerType
.
__map_docstr__
(
mapper
(
method
.
__doc__
),
method_name
=
method_name
,
name
=
name
)
else
:
attrs
[
'__doc__'
]
=
LayerType
.
__map_docstr__
(
method
.
__doc__
,
method_name
=
method_name
,
name
=
name
)
return
super
(
LayerType
,
cls
).
__new__
(
cls
,
name
,
bases
,
attrs
)
@
staticmethod
def
__map_docstr__
(
doc
,
name
,
method_name
):
assert
isinstance
(
doc
,
basestring
)
# replace LayerOutput to paddle.v2.config_base.Layer
doc
=
doc
.
replace
(
"LayerOutput"
,
"paddle.v2.config_base.Layer"
)
doc
=
doc
.
replace
(
'ParameterAttribute'
,
'paddle.v2.attr.ParameterAttribute'
)
doc
=
re
.
sub
(
r
'ExtraLayerAttribute[^\s]?'
,
'paddle.v2.attr.ExtraAttribute'
,
doc
)
# xxx_layer to xxx
doc
=
re
.
sub
(
r
"(?P<name>[a-z]+)_layer"
,
r
"\g<name>"
,
doc
)
# XxxxActivation to paddle.v2.Activation.Xxxx
doc
=
re
.
sub
(
r
"(?P<name>[A-Z][a-zA-Z]+)Activation"
,
r
"paddle.v2.Activation.\g<name>"
,
doc
)
# TODO(yuyang18): Add more rules if needed.
__layer_map__
=
{}
def
__map_docstr__
(
doc
,
name
):
if
doc
is
None
:
return
doc
assert
isinstance
(
doc
,
basestring
)
# replace LayerOutput to paddle.v2.config_base.Layer
doc
=
doc
.
replace
(
"LayerOutput"
,
"paddle.v2.config_base.Layer"
)
doc
=
doc
.
replace
(
'ParameterAttribute'
,
'paddle.v2.attr.ParameterAttribute'
)
doc
=
re
.
sub
(
r
'ExtraLayerAttribute[^\s]?'
,
'paddle.v2.attr.ExtraAttribute'
,
doc
)
# xxx_layer to xxx
doc
=
re
.
sub
(
r
"(?P<name>[a-z]+)_layer"
,
r
"\g<name>"
,
doc
)
# XxxxActivation to paddle.v2.Activation.Xxxx
doc
=
re
.
sub
(
r
"(?P<name>[A-Z][a-zA-Z]+)Activation"
,
r
"paddle.v2.Activation.\g<name>"
,
doc
)
# xxx_evaluator to paddle.v2.evaluator.xxx
doc
=
re
.
sub
(
r
"(?P<name>[a-z]+)_evaluator"
,
r
"evaluator.\g<name>"
,
doc
)
# TODO(yuyang18): Add more rules if needed.
return
doc
def
__convert_to_v2__
(
f
,
name
,
module
):
def
wrapped
(
*
args
,
**
xargs
):
out
=
f
(
*
args
,
**
xargs
)
outs
=
out
if
not
isinstance
(
out
,
collections
.
Sequence
):
outs
=
[
out
]
for
l
in
outs
:
if
isinstance
(
l
,
conf_helps
.
LayerOutput
):
__layer_map__
[
l
.
full_name
]
=
l
return
out
wrapped
.
__doc__
=
__map_docstr__
(
f
.
__doc__
,
name
)
wrapped
.
__name__
=
name
wrapped
.
__module__
=
module
return
wrapped
class
Layer
(
object
):
__metaclass__
=
LayerType
def
__init__
(
self
,
name
=
None
,
parent_layers
=
None
):
assert
isinstance
(
parent_layers
,
dict
)
self
.
name
=
name
self
.
__context__
=
{}
self
.
__parent_layers__
=
parent_layers
# some layer may have some extra parent layer
self
.
__extra_parent__
=
[]
# used for evaluator.
self
.
__children_layers__
=
[]
def
extra_parent
(
self
):
return
self
.
__extra_parent__
def
append_extra_parent
(
self
,
parent
):
self
.
__extra_parent__
.
append
(
parent
)
def
append_child
(
self
,
layer
,
parent_names
):
self
.
__children_layers__
.
append
((
layer
,
parent_names
))
def
to_proto
(
self
,
context
):
"""
function to set proto attribute
"""
self
.
__context__
=
context
# STEP: short cut if this layer is parsed before.
if
self
.
context_name
()
in
context
:
if
self
.
use_context_name
():
return
context
[
self
.
context_name
()]
else
:
return
context
[
self
.
name
]
# STEP: parse extra_parent that is not used by this layer but must
# be parsed before this layer.
for
p
in
self
.
__extra_parent__
:
p
.
to_proto
(
context
=
context
)
# STEP: parse parent that is used by this layer, get the result and
# insert into kwargs of the next layer's to_proto_impl method.
kwargs
=
dict
()
for
layer_name
in
self
.
__parent_layers__
:
if
not
isinstance
(
self
.
__parent_layers__
[
layer_name
],
collections
.
Sequence
):
v1_layer
=
self
.
__parent_layers__
[
layer_name
].
to_proto
(
context
=
context
)
else
:
v1_layer
=
map
(
lambda
x
:
x
.
to_proto
(
context
=
context
),
self
.
__parent_layers__
[
layer_name
])
kwargs
[
layer_name
]
=
v1_layer
# STEP: parse myself and add myself into context.
ret_val
=
self
.
to_proto_impl
(
**
kwargs
)
if
self
.
context_name
()
is
not
None
\
and
self
.
context_name
()
not
in
context
:
context
[
self
.
context_name
()]
=
ret_val
# STEP: parse children that should be pased after this layer.
for
layer
,
pnames
in
self
.
__children_layers__
:
drop
=
False
# child will only be parsed if all parents are in context.
for
pname
in
pnames
:
if
pname
not
in
context
:
drop
=
True
break
if
drop
:
continue
layer
.
to_proto
(
context
=
context
)
# STEP: return v1 layer result
if
self
.
context_name
()
is
None
:
return
ret_val
elif
self
.
use_context_name
():
return
context
[
self
.
context_name
()]
else
:
return
context
[
self
.
name
]
def
to_proto_impl
(
self
,
**
kwargs
):
raise
NotImplementedError
()
def
context_name
(
self
):
"""
Context name means the context which stores `to_proto_impl` result.
If multiple layer share same context_name, the `to_proto_impl` of them
will be invoked only once.
"""
return
self
.
name
def
use_context_name
(
self
):
return
False
def
calculate_size
(
self
):
"""
lazy calculate size of the layer, should be called when to_proto_impl of
this layer is called.
:return:
"""
return
self
.
__context__
[
self
.
context_name
()].
size
def
attr
(
self
):
topo
=
Topology
(
self
)
return
topo
.
get_layer_proto
(
self
.
name
)
def
__convert_to_v2__
(
method_name
,
parent_names
,
is_default_name
=
True
,
attach_parent
=
False
):
if
is_default_name
:
wrapper
=
wrap_name_default
(
name_prefix
=
method_name
)
else
:
wrapper
=
None
class
V2LayerImpl
(
Layer
):
METHOD_NAME
=
method_name
def
__init__
(
self
,
**
kwargs
):
parent_layers
=
dict
()
other_kwargs
=
dict
()
for
pname
in
parent_names
:
if
pname
in
kwargs
:
parent_layers
[
pname
]
=
kwargs
[
pname
]
if
attach_parent
:
pnames
=
[
x
.
context_name
()
for
x
in
parent_layers
.
values
()]
for
pname
in
parent_layers
:
layers
=
kwargs
[
pname
]
if
not
isinstance
(
layers
,
collections
.
Sequence
):
layers
=
[
layers
]
for
layer
in
layers
:
layer
.
append_child
(
self
,
pnames
)
for
key
in
kwargs
.
keys
():
if
key
not
in
parent_names
:
other_kwargs
[
key
]
=
kwargs
[
key
]
name
=
kwargs
.
get
(
'name'
,
None
)
super
(
V2LayerImpl
,
self
).
__init__
(
name
,
parent_layers
)
self
.
__other_kwargs__
=
other_kwargs
if
wrapper
is
not
None
:
__init__
=
wrapper
(
__init__
)
def
to_proto_impl
(
self
,
**
kwargs
):
args
=
dict
()
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
return
getattr
(
conf_helps
,
method_name
)(
**
args
)
return
V2LayerImpl
Layer
=
conf_helps
.
LayerOutput
python/paddle/v2/evaluator.py
浏览文件 @
97c4d23f
...
...
@@ -13,8 +13,8 @@
# limitations under the License.
import
paddle.trainer_config_helpers.evaluators
as
evs
import
inspect
from
config_base
import
__convert_to_v2__
import
inspect
__all__
=
[]
...
...
@@ -27,7 +27,8 @@ def initialize():
__ev__
=
getattr
(
evs
,
__ev_name__
)
__new_name__
=
convert_to_new_name
(
__ev_name__
)
globals
()[
__new_name__
]
=
__ev__
globals
()[
__new_name__
]
=
__convert_to_v2__
(
__ev__
,
__new_name__
,
__name__
)
globals
()[
__new_name__
].
__name__
=
__new_name__
__all__
.
append
(
__new_name__
)
...
...
python/paddle/v2/inference.py
浏览文件 @
97c4d23f
...
...
@@ -12,9 +12,9 @@ class Inference(object):
"""
Inference combines neural network output and parameters together
to do inference.
.. code-block:: python
inferer = Inference(output_layer=prediction, parameters=parameters)
for data_batch in batches:
print inferer.infer(data_batch)
...
...
@@ -92,8 +92,8 @@ def infer(output_layer, parameters, input, feeding=None, field='value'):
.. code-block:: python
result = paddle.infer(output_layer=prediction,
parameters=parameters,
result = paddle.infer(output_layer=prediction,
parameters=parameters,
input=SomeData)
print result
...
...
@@ -101,14 +101,14 @@ def infer(output_layer, parameters, input, feeding=None, field='value'):
.. code-block:: python
result = paddle.infer(output_layer=[prediction1, prediction2],
parameters=parameters,
result = paddle.infer(output_layer=[prediction1, prediction2],
parameters=parameters,
input=SomeData,
field=[id, value]])
print result
:param output_layer: output of the neural network that would be inferred
:type output_layer: paddle.v2.config_base.Layer or a list of
:type output_layer: paddle.v2.config_base.Layer or a list of
paddle.v2.config_base.Layer
:param parameters: parameters of the neural network.
:type parameters: paddle.v2.parameters.Parameters
...
...
@@ -117,14 +117,14 @@ def infer(output_layer, parameters, input, feeding=None, field='value'):
:type input: collections.Iterable
:param feeding: Reader dictionary. Default could generate from input
value.
:param field: The prediction field. It should in [`value`, `id`, `prob`].
`value` and `prob` mean return the prediction probabilities,
:param field: The prediction field. It should in [`value`, `id`, `prob`].
`value` and `prob` mean return the prediction probabilities,
`id` means return the prediction labels. Default is `value`.
Note that `prob` only used when output_layer is beam_search
Note that `prob` only used when output_layer is beam_search
or max_id.
:type field: str
:return: The prediction result. If there are multiple outout_layers and fields,
the return order is outout_layer1.field1, outout_layer2.field1, ...,
:return: The prediction result. If there are multiple outout_layers and fields,
the return order is outout_layer1.field1, outout_layer2.field1, ...,
outout_layer1.field2, outout_layer2.field2 ...
:rtype: numpy.ndarray
"""
...
...
python/paddle/v2/layer.py
浏览文件 @
97c4d23f
...
...
@@ -33,26 +33,14 @@ The primary usage shows below.
import
collections
import
copy
import
re
import
paddle.trainer_config_helpers.layers
as
v1_layers
import
paddle.trainer.config_parser
as
cp
from
paddle.proto.ModelConfig_pb2
import
ModelConfig
,
SubModelConfig
from
config_base
import
__convert_to_v2__
import
config_base
__all__
=
[
'data'
,
'parse_network'
]
__layer_map__
=
{}
def
__wrap__
(
f
):
def
wrapped
(
*
args
,
**
xargs
):
out
=
f
(
*
args
,
**
xargs
)
outs
=
out
if
not
isinstance
(
out
,
collections
.
Sequence
):
outs
=
[
out
]
for
l
in
outs
:
if
isinstance
(
l
,
v1_layers
.
LayerOutput
):
__layer_map__
[
l
.
full_name
]
=
l
return
out
return
wrapped
def
__need_to_keep__
(
name
):
...
...
@@ -90,7 +78,7 @@ for name in v1_layers.__all__:
continue
new_name
=
__convert_name__
(
name
)
if
callable
(
obj
)
and
__need_to_wrap__
(
name
):
globals
()[
new_name
]
=
__
wrap__
(
obj
)
globals
()[
new_name
]
=
__
convert_to_v2__
(
obj
,
new_name
,
__name__
)
else
:
globals
()[
new_name
]
=
obj
__all__
.
append
(
new_name
)
...
...
@@ -102,9 +90,21 @@ def __data_layer__(name, type, **kwargs):
return
l
data
=
__wrap__
(
__data_layer__
)
def
__map_data_docstr__
(
doc
):
doc
=
re
.
sub
(
r
'(data = [^\)]+)\).*'
,
"data = paddle.layer.data(name=
\"
input
\"
, "
"type=paddle.data_type.dense_vector(1000))"
,
doc
)
doc
=
re
.
sub
(
r
':param size:.*'
,
':param type: Data type of this data layer'
,
doc
)
doc
=
re
.
sub
(
r
':type size:.*'
,
":type size: paddle.v2.data_type.InputType"
,
doc
)
return
doc
__data_layer__
.
__doc__
=
__map_data_docstr__
(
v1_layers
.
data_layer
.
__doc__
)
LayerV2
=
v1_layers
.
LayerOutput
data
=
__convert_to_v2__
(
__data_layer__
,
'name'
,
__name__
)
def
__get_used_layers__
(
output_layers
,
extra_layers
=
None
):
...
...
@@ -273,7 +273,7 @@ def parse_network(output_layers, extra_layers=None):
def
get_layer
(
name
):
return
__layer_map__
.
get
(
name
)
return
config_base
.
__layer_map__
.
get
(
name
)
cp
.
begin_parse
()
python/paddle/v2/tests/test_rnn_layer.py
浏览文件 @
97c4d23f
...
...
@@ -32,6 +32,7 @@ class RNNTest(unittest.TestCase):
def
parse_old_rnn
():
reset_parser
()
def
step
(
y
):
mem
=
conf_helps
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
conf_helps
.
fc_layer
(
...
...
@@ -52,6 +53,7 @@ class RNNTest(unittest.TestCase):
def
parse_new_rnn
():
reset_parser
()
def
new_step
(
y
):
mem
=
layer
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
layer
.
fc
(
input
=
[
y
,
mem
],
...
...
@@ -72,7 +74,6 @@ class RNNTest(unittest.TestCase):
parse_new_rnn
().
splitlines
(
1
))
print
''
.
join
(
diff
)
def
test_sequence_rnn_multi_input
(
self
):
dict_dim
=
10
word_dim
=
8
...
...
@@ -81,6 +82,7 @@ class RNNTest(unittest.TestCase):
def
parse_old_rnn
():
reset_parser
()
def
test
():
data
=
conf_helps
.
data_layer
(
name
=
"word"
,
size
=
dict_dim
)
label
=
conf_helps
.
data_layer
(
name
=
"label"
,
size
=
label_dim
)
...
...
python/paddle/v2/topology.py
浏览文件 @
97c4d23f
...
...
@@ -17,34 +17,11 @@ import collections
from
paddle.proto.ModelConfig_pb2
import
ModelConfig
import
paddle.trainer_config_helpers
as
conf_helps
import
layer
as
v2_layer
import
config_base
__all__
=
[
'Topology'
]
def
__flatten__
(
lis
):
"""
Given a list, possibly nested to any level, return it flattened.
"""
new_lis
=
[]
for
item
in
lis
:
if
isinstance
(
item
,
collections
.
Sequence
):
new_lis
.
extend
(
__flatten__
(
item
))
else
:
new_lis
.
append
(
item
)
return
new_lis
def
__bfs_travel__
(
callback
,
*
layers
):
layers
=
__flatten__
(
layers
)
for
each_layer
in
layers
:
__break__
=
callback
(
each_layer
)
if
__break__
:
return
__layers__
=
each_layer
.
__parent_layers__
.
values
()
+
\
each_layer
.
extra_parent
()
__bfs_travel__
(
callback
,
*
__layers__
)
class
Topology
(
object
):
"""
Topology is used to store the information about all layers
...
...
@@ -125,5 +102,5 @@ class Topology(object):
def
__check_layer_type__
(
layer
):
if
not
isinstance
(
layer
,
v2_layer
.
LayerV2
):
raise
ValueError
(
'layer should have type paddle.
layer
.Layer'
)
if
not
isinstance
(
layer
,
config_base
.
Layer
):
raise
ValueError
(
'layer should have type paddle.
v2.config_base
.Layer'
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录