Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
08a817e3
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
08a817e3
编写于
12月 28, 2016
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete unnecessary parameters and modifications for some mathmatical
layers.
上级
ce939b30
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
45 addition
and
82 deletion
+45
-82
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+45
-82
未找到文件。
python/paddle/trainer/config_parser.py
浏览文件 @
08a817e3
...
...
@@ -1803,9 +1803,8 @@ class ConvTransLayer(ConvTransLayerBase):
@
config_layer
(
'norm'
)
class
NormLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
super
(
NormLayer
,
self
).
__init__
(
name
,
'norm'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
NormLayer
,
self
).
__init__
(
name
,
'norm'
,
0
,
inputs
=
inputs
,
**
xargs
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
norm_conf
=
self
.
config
.
inputs
[
input_index
].
norm_conf
...
...
@@ -1817,9 +1816,8 @@ class NormLayer(LayerBase):
@
config_layer
(
'pool'
)
class
PoolLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
super
(
PoolLayer
,
self
).
__init__
(
name
,
'pool'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
PoolLayer
,
self
).
__init__
(
name
,
'pool'
,
0
,
inputs
=
inputs
,
**
xargs
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
pool_conf
=
self
.
config
.
inputs
[
input_index
].
pool_conf
...
...
@@ -1851,7 +1849,6 @@ class BatchNormLayer(LayerBase):
inputs
,
active_type
=
"linear"
,
bias
=
True
,
device
=
None
,
use_global_stats
=
True
,
moving_average_fraction
=
0.9
,
batch_norm_type
=
None
,
...
...
@@ -1893,7 +1890,6 @@ class BatchNormLayer(LayerBase):
0
,
active_type
=
active_type
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
if
use_global_stats
is
not
None
:
...
...
@@ -1927,9 +1923,9 @@ class BatchNormLayer(LayerBase):
@
config_layer
(
'trans'
)
class
TransLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
TransLayer
,
self
).
__init__
(
name
,
'trans'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'trans'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'TransLayer must have one and only one input'
)
...
...
@@ -1938,9 +1934,9 @@ class TransLayer(LayerBase):
@
config_layer
(
'resize'
)
class
ResizeLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
size
,
inputs
,
**
xargs
):
super
(
ResizeLayer
,
self
).
__init__
(
name
,
'resize'
,
size
=
size
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'resize'
,
size
=
size
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'ResizeLayer must have one and only one input'
)
...
...
@@ -2265,15 +2261,9 @@ def Generator(
@
config_layer
(
'expand'
)
class
ExpandLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
trans_type
=
'non-seq'
,
device
=
None
,
bias
=
False
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
trans_type
=
'non-seq'
,
bias
=
False
,
**
xargs
):
super
(
ExpandLayer
,
self
).
__init__
(
name
,
'expand'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'expand'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
2
,
'ExpandLayer takes 2 and only 2 inputs'
)
self
.
config
.
trans_type
=
trans_type
...
...
@@ -2304,12 +2294,10 @@ class MaxLayer(LayerBase):
inputs
,
trans_type
=
'non-seq'
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
output_max_index
=
None
,
**
xargs
):
super
(
MaxLayer
,
self
).
__init__
(
name
,
'max'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
super
(
MaxLayer
,
self
).
__init__
(
name
,
'max'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'MaxLayer must have 1 input'
)
self
.
config
.
trans_type
=
trans_type
self
.
config
.
active_type
=
active_type
...
...
@@ -2356,7 +2344,6 @@ class SequenceLastInstanceLayer(LayerBase):
inputs
,
active_type
=
'linear'
,
trans_type
=
'non-seq'
,
device
=
None
,
bias
=
False
,
**
xargs
):
super
(
SequenceLastInstanceLayer
,
self
).
__init__
(
...
...
@@ -2364,7 +2351,6 @@ class SequenceLastInstanceLayer(LayerBase):
'seqlastins'
,
0
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
**
xargs
)
config_assert
(
...
...
@@ -2378,39 +2364,32 @@ class SequenceLastInstanceLayer(LayerBase):
@
config_layer
(
'seqfirstins'
)
class
SequenceFirstInstanceLayer
(
SequenceLastInstanceLayer
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
trans_type
=
'non-seq'
,
device
=
None
,
bias
=
False
,
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
trans_type
=
'non-seq'
,
bias
=
False
,
**
xargs
):
super
(
SequenceFirstInstanceLayer
,
self
).
__init__
(
name
,
inputs
=
inputs
,
active_type
=
active_type
,
device
=
device
,
bias
=
bias
)
bias
=
bias
,
**
xargs
)
self
.
config
.
trans_type
=
trans_type
self
.
config
.
select_first
=
True
@
config_layer
(
'seqconcat'
)
class
SequenceConcatLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
bias
=
False
,
**
xargs
):
super
(
SequenceConcatLayer
,
self
).
__init__
(
name
,
'seqconcat'
,
0
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
**
xargs
)
config_assert
(
...
...
@@ -2428,7 +2407,6 @@ class SequenceReshapeLayer(LayerBase):
size
,
inputs
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
**
xargs
):
super
(
SequenceReshapeLayer
,
self
).
__init__
(
...
...
@@ -2436,7 +2414,6 @@ class SequenceReshapeLayer(LayerBase):
'seqreshape'
,
size
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
**
xargs
)
config_assert
(
...
...
@@ -2447,21 +2424,9 @@ class SequenceReshapeLayer(LayerBase):
@
config_layer
(
'subseq'
)
class
SubSequenceLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
bias
=
False
,
**
xargs
):
super
(
SubSequenceLayer
,
self
).
__init__
(
name
,
'subseq'
,
0
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
**
xargs
)
name
,
'subseq'
,
0
,
inputs
=
inputs
,
active_type
=
active_type
,
**
xargs
)
config_assert
(
len
(
inputs
)
==
3
,
'SubSequenceLayer must have 3 inputs'
)
input_layer0
=
self
.
get_input_layer
(
0
)
size
=
input_layer0
.
size
...
...
@@ -2471,9 +2436,9 @@ class SubSequenceLayer(LayerBase):
@
config_layer
(
'out_prod'
)
class
OuterProdLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
OuterProdLayer
,
self
).
__init__
(
name
,
'out_prod'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'out_prod'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
inputs
)
==
2
,
'OuterProdLayer must have 2 inputs'
)
input_layer0
=
self
.
get_input_layer
(
0
)
input_layer1
=
self
.
get_input_layer
(
1
)
...
...
@@ -2482,9 +2447,9 @@ class OuterProdLayer(LayerBase):
@
config_layer
(
'power'
)
class
PowerLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
PowerLayer
,
self
).
__init__
(
name
,
'power'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'power'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
inputs
)
==
2
,
'PowerLayer must have 2 inputs'
)
input_layer1
=
self
.
get_input_layer
(
1
)
self
.
set_layer_size
(
input_layer1
.
size
)
...
...
@@ -2495,8 +2460,13 @@ class PowerLayer(LayerBase):
@
config_layer
(
'slope_intercept'
)
class
SlopeInterceptLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
slope
=
1.0
,
intercept
=
0.0
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
slope
=
1.0
,
intercept
=
0.0
,
device
=
None
,
**
xargs
):
super
(
SlopeInterceptLayer
,
self
).
__init__
(
name
,
'slope_intercept'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
self
.
config
.
slope
=
slope
...
...
@@ -2508,9 +2478,9 @@ class SlopeInterceptLayer(LayerBase):
@
config_layer
(
'scaling'
)
class
ScalingLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
ScalingLayer
,
self
).
__init__
(
name
,
'scaling'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'scaling'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
inputs
)
==
2
,
'ScalingLayer must have 2 inputs'
)
input_layer1
=
self
.
get_input_layer
(
1
)
self
.
set_layer_size
(
input_layer1
.
size
)
...
...
@@ -2521,9 +2491,9 @@ class ScalingLayer(LayerBase):
@
config_layer
(
'conv_shift'
)
class
ConvShiftLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
ConvShiftLayer
,
self
).
__init__
(
name
,
'conv_shift'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'conv_shift'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
inputs
)
==
2
,
'ConvShiftLayer must have 2 inputs'
)
input_layer0
=
self
.
get_input_layer
(
0
)
self
.
set_layer_size
(
input_layer0
.
size
)
...
...
@@ -2531,9 +2501,9 @@ class ConvShiftLayer(LayerBase):
@
config_layer
(
'convex_comb'
)
class
ConvexCombinationLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
size
,
inputs
,
device
=
None
):
super
(
ConvexCombinationLayer
,
self
).
__init__
(
name
,
'convex_comb'
,
size
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'convex_comb'
,
size
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
self
.
inputs
)
==
2
,
'ConvexCombinationLayer must have 2 inputs'
)
config_assert
(
...
...
@@ -2572,9 +2542,9 @@ class BilinearInterpLayer(LayerBase):
@
config_layer
(
'sum_to_one_norm'
)
class
SumToOneNormLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
SumToOneNormLayer
,
self
).
__init__
(
name
,
'sum_to_one_norm'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'sum_to_one_norm'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'SumToOneNormLayer must have 1 input'
)
input_layer0
=
self
.
get_input_layer
(
0
)
...
...
@@ -2619,17 +2589,10 @@ class AverageLayer(LayerBase):
average_strategy
=
'average'
,
trans_type
=
'non-seq'
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
**
xargs
):
super
(
AverageLayer
,
self
).
__init__
(
name
,
'average'
,
0
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
**
xargs
)
name
,
'average'
,
0
,
inputs
=
inputs
,
active_type
=
active_type
,
**
xargs
)
self
.
config
.
average_strategy
=
average_strategy
self
.
config
.
trans_type
=
trans_type
config_assert
(
len
(
inputs
)
==
1
,
'AverageLayer must have 1 input'
)
...
...
@@ -2653,9 +2616,9 @@ class CosSimLayer(LayerBase):
@
config_layer
(
'tensor'
)
class
TensorLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
inputs
,
device
=
None
,
bias
=
True
,
**
xargs
):
def
__init__
(
self
,
name
,
size
,
inputs
,
bias
=
True
,
**
xargs
):
super
(
TensorLayer
,
self
).
__init__
(
name
,
'tensor'
,
size
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'tensor'
,
size
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
2
,
'TensorLayer must have 2 inputs'
)
config_assert
(
size
>
0
,
'size must be positive'
)
config_assert
(
inputs
[
1
].
parameter_name
==
None
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录