initializer.py 30.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18
import numpy as np
S
rename  
sneaxiy 已提交
19
from .wrapped_decorator import signature_safe_contextmanager
20
from .core import VarDesc
W
Wu Yi 已提交
21
from . import unique_name
22

23
__all__ = [
24 25 26
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
    'MSRA', 'force_init_on_cpu', 'init_on_cpu', 'ConstantInitializer',
    'UniformInitializer', 'NormalInitializer', 'TruncatedNormalInitializer',
27 28
    'XavierInitializer', 'BilinearInitializer', 'MSRAInitializer',
    'NumpyArrayInitializer'
29
]
30

31 32 33 34
_force_init_on_cpu_ = False


def force_init_on_cpu():
Q
qiaolongfei 已提交
35 36 37
    """
    The flag of whether force to init variables on CPU.

Q
Qiao Longfei 已提交
38 39
    Returns:
        bool: the state if we should force init on CPU.
40

Q
qiaolongfei 已提交
41
    Examples:
Q
Qiao Longfei 已提交
42

Q
qiaolongfei 已提交
43 44
        .. code-block:: python

45 46 47 48
            import paddle.fluid as fluid
            if fluid.initializer.force_init_on_cpu():
                step = fluid.layers.create_global_var(
                    shape=[2,3], value=1.0, dtype='float32')
Q
qiaolongfei 已提交
49 50

    """
51 52 53
    return _force_init_on_cpu_


S
rename  
sneaxiy 已提交
54
@signature_safe_contextmanager
55 56
def init_on_cpu():
    """
Q
qiaolongfei 已提交
57
    Force the variable to be inited on CPU.
58 59

    Examples:
Q
qiaolongfei 已提交
60 61
        .. code-block:: python

62 63 64 65
            import paddle.fluid as fluid
            with fluid.initializer.init_on_cpu():
                step = fluid.layers.create_global_var(
                    shape=[2,3], value=1.0, dtype='float32')
66 67 68 69 70 71 72 73 74

    """
    global _force_init_on_cpu_

    pre_state = force_init_on_cpu()
    _force_init_on_cpu_ = True
    yield
    _force_init_on_cpu_ = pre_state

75 76 77 78 79 80 81 82 83 84

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
85
    def __init__(self):
86 87 88 89 90 91 92
        pass

    def __call__(self, param, block):
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

128 129 130

class ConstantInitializer(Initializer):
    """Implements the constant initializer
131 132 133 134 135 136 137

    Args:
        value (float): constant value to initialize the variable

    Examples:
        .. code-block:: python

138 139
    	    import paddle.fluid as fluid
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
140 141 142
	    fc = fluid.layers.fc(input=x, size=10,
    		param_attr=fluid.initializer.Constant(value=2.0))

143 144
    """

145
    def __init__(self, value=0.0, force_cpu=False):
146 147 148
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
149
        self._force_cpu = force_cpu
150 151 152 153 154 155 156 157 158 159 160 161 162 163

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

179
        # Initialization Ops should be prepended and not appended
W
Wu Yi 已提交
180
        op = block._prepend_op(
181
            type="fill_constant",
182
            outputs={"Out": out_var},
183 184
            attrs={
                "shape": var.shape,
185
                "dtype": int(out_dtype),
186 187
                "value": float(self._value),
                'force_cpu': self._force_cpu or force_init_on_cpu()
M
minqiyang 已提交
188 189
            },
            stop_gradient=True)
190 191 192 193 194 195 196 197 198

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
199
        if not framework.in_dygraph_mode():
200
            var.op = op
201 202 203 204
        return op


class UniformInitializer(Initializer):
205
    """Implements the random uniform distribution initializer
206 207 208 209 210 211 212 213 214

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
215 216
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
217
            fc = fluid.layers.fc(input=x, size=10,
218
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
219 220 221 222 223
    """

    def __init__(self, low=-1.0, high=1.0, seed=0):
        assert low is not None
        assert high is not None
224
        assert high >= low
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        assert seed is not None
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed

    def __call__(self, var, block):
        """Add uniform distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
245 246
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
247

X
polish  
Xin Pan 已提交
248
        # to be compatible of fp16 initializers
W
Wu Yi 已提交
249 250 251
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
252 253
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
254 255 256 257 258 259 260 261
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
262
        op = block._prepend_op(
263
            type="uniform_random",
W
Wu Yi 已提交
264
            outputs={"Out": out_var},
265 266
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
267
                "dtype": out_dtype,
268 269 270
                "min": self._low,
                "max": self._high,
                "seed": self._seed
M
minqiyang 已提交
271 272
            },
            stop_gradient=True)
W
Wu Yi 已提交
273 274 275 276 277 278 279 280 281

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
282
        if not framework.in_dygraph_mode():
283
            var.op = op
284
        return op
285 286 287


class NormalInitializer(Initializer):
288 289 290 291 292 293 294 295 296 297
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

298 299 300 301
            import paddle.fluid as fluid
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
328 329
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
330 331 332 333 334

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
335 336
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
337 338 339 340 341 342 343 344
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
345
        op = block._prepend_op(
346
            type="gaussian_random",
W
Wu Yi 已提交
347
            outputs={"Out": out_var},
348 349
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
350
                "dtype": out_dtype,
351 352
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
353 354
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
355 356
            },
            stop_gradient=True)
W
Wu Yi 已提交
357 358 359 360 361 362 363 364

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
365
        if not framework.in_dygraph_mode():
366
            var.op = op
367
        return op
368 369


370 371 372 373 374 375 376 377 378 379 380
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
381 382
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
383 384 385 386 387 388 389 390
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
391
        super(TruncatedNormalInitializer, self).__init__()
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add truncated normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        if self._seed == 0:
            self._seed = block.program.random_seed
412 413 414 415 416 417

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
418
                    ['truncated_gaussian_random', var.name, 'tmp'])),
419 420 421 422 423 424 425 426
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

427 428
        op = block._prepend_op(
            type="truncated_gaussian_random",
429
            outputs={"Out": out_var},
430 431
            attrs={
                "shape": var.shape,
432
                "dtype": out_dtype,
433 434 435
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
436 437
            },
            stop_gradient=True)
438 439 440 441 442 443 444 445

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
446
        if not framework.in_dygraph_mode():
447
            var.op = op
448 449 450
        return op


451
class XavierInitializer(Initializer):
Q
qiaolongfei 已提交
452
    """
453
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
454 455 456
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
457 458 459

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
460 461 462 463 464 465
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

466
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
467
    is
468

Q
qiaolongfei 已提交
469
    .. math::
470

Q
qiaolongfei 已提交
471
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
472 473


Q
qiaolongfei 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487
    Args:
        uniform (bool): whether to use uniform or normal distribution
        fan_in (float): fan_in for Xavier initialization. If None, it is
                inferred from the variable.
        fan_out (float): fan_out for Xavier initialization. If None, it is
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
488 489
            import paddle.fluid as fluid
            queries = fluid.layers.data(name='x', shape=[1], dtype='float32')
Q
qiaolongfei 已提交
490 491 492 493 494 495 496
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

    def __call__(self, var, block):
        """Add xavier initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
524 525 526
        if self._seed == 0:
            self._seed = block.program.random_seed

527 528 529 530 531 532 533 534 535 536 537 538 539 540
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

541 542
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
543
            op = block._prepend_op(
544
                type="uniform_random",
545
                outputs={"Out": out_var},
546
                attrs={
547 548
                    "shape": out_var.shape,
                    "dtype": out_dtype,
549 550 551
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
552 553
                },
                stop_gradient=True)
554 555 556

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
557
            op = block._prepend_op(
558
                type="gaussian_random",
559
                outputs={"Out": out_var},
560
                attrs={
561 562
                    "shape": out_var.shape,
                    "dtype": out_dtype,
563 564 565
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
566 567
                },
                stop_gradient=True)
568 569 570 571 572 573 574 575 576

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
577
        if not framework.in_dygraph_mode():
578
            var.op = op
579
        return op
580 581 582 583 584 585


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
        fan_in (float): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
614 615 616 617 618

            import paddle.fluid as fluid
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
619

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

    def __call__(self, var, block):
        """Add MSRA initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
650 651 652
        if self._seed == 0:
            self._seed = block.program.random_seed

653 654 655 656 657 658 659 660 661 662 663 664 665 666
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

667 668
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
W
Wu Yi 已提交
669
            op = block._prepend_op(
670
                type="uniform_random",
671
                outputs={"Out": out_var},
672
                attrs={
673 674
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
675 676 677
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
678 679
                },
                stop_gradient=True)
680 681 682

        else:
            std = np.sqrt(2.0 / float(fan_in))
W
Wu Yi 已提交
683
            op = block._prepend_op(
684
                type="gaussian_random",
685
                outputs={"Out": out_var},
686
                attrs={
687 688
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
689 690 691
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
692 693
                },
                stop_gradient=True)
694 695 696 697 698 699 700 701 702

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
703
        if not framework.in_dygraph_mode():
704
            var.op = op
705
        return op
706 707


708
class BilinearInitializer(Initializer):
709
    """
710 711 712
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
713 714 715 716 717

    Examples:

        .. code-block:: python

718 719 720 721 722 723
            import paddle.fluid as fluid
            factor = 2
            C = 2
            w_attr = fluid.initializer.ParamAttr(
                learning_rate=0., 
                regularizer=fluid.regularizer.L2Decay(0.),
724
                initializer=fluid.initializer.Bilinear())
725 726 727 728 729 730 731 732 733 734 735 736
            x = fluid.layers.data(name="data", shape=[3, 32, 32], 
                                  dtype="float32")
            conv_up = fluid.layers.conv2d_transpose(
                input=x,
                num_filters=C,
                output_size=None,
                filter_size=2 * factor - factor % 2,
                padding=int(math.ceil((factor - 1) / 2.)),
                stride=factor,
                groups=C,
                param_attr=w_attr,
                bias_attr=False)
737 738

    Where, `num_filters=C` and `groups=C` means this is channel-wise transposed
739 740 741 742 743
    convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
744 745
    interpolation unchanged during training.

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

    def __call__(self, var, block):
        """Add biliear initialization ops for a variable

        Args:
            var (Variable): Variable that needs to be initialized.
            block (Block): The block in which initialization ops should
                           be added.

        Returns:
762
            Operator: the initialization op
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

        Raises:
            ValueError: If type of `var` and `block` is not right.
                        If the shape of `var` size is not 4 and
                        var.shape[2] != var.shape[3].
        """
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
808 809 810 811 812 813 814 815
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
816
            outputs={'Out': [out_var]},
817
            attrs={
818
                'dtype': out_dtype,
819 820 821
                'shape': list(shape),
                value_name: values
            })
822 823 824 825 826 827 828 829 830

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
831
        if not framework.in_dygraph_mode():
832
            var.op = op
833 834 835
        return op


836 837 838 839 840 841 842 843 844
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array

    Args:
        value (numpy): numpy array to initialize the variable

    Examples:
        .. code-block:: python

845
            import paddle.fluid as fluid
846
            x = fluid.layers.data(name="x", shape=[5], dtype='float32')
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

887
        # Initialization Ops should be prepended and not appended
888
        if out_dtype == VarDesc.VarType.FP32:
889
            value_name = "fp32_values"
890 891
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
892
            value_name = "int32_values"
893
            values = [int(v) for v in np_value.flat]
894 895
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
896
        if self._value.size > 1024 * 1024 * 1024:
897 898 899 900
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        op = block._prepend_op(
            type='assign_value',
901
            outputs={'Out': out_var},
902
            attrs={
903
                'dtype': out_dtype,
904
                'shape': list(self._value.shape),
905 906 907
                value_name: values
            },
            stop_gradient=True)
908 909 910 911 912 913 914 915 916

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
917
        if not framework.in_dygraph_mode():
918
            var.op = op
919 920 921
        return op


922 923 924 925 926 927 928 929 930 931 932 933
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
934
TruncatedNormal = TruncatedNormalInitializer
935 936
Xavier = XavierInitializer
MSRA = MSRAInitializer
937
Bilinear = BilinearInitializer