Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1f89249a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1f89249a
编写于
3月 26, 2019
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update DeepCF model
test=develop
上级
0fff666f
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
146 addition
and
56 deletion
+146
-56
paddle/fluid/operators/gather.cu.h
paddle/fluid/operators/gather.cu.h
+1
-0
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+1
-1
python/paddle/fluid/imperative/base.py
python/paddle/fluid/imperative/base.py
+2
-1
python/paddle/fluid/imperative/tracer.py
python/paddle/fluid/imperative/tracer.py
+12
-1
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+1
-1
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
...on/paddle/fluid/tests/unittests/test_imperative_deepcf.py
+129
-52
未找到文件。
paddle/fluid/operators/gather.cu.h
浏览文件 @
1f89249a
...
...
@@ -64,6 +64,7 @@ void GPUGather(const platform::DeviceContext& ctx, const Tensor& src,
for
(
int
i
=
1
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
const
T
*
p_src
=
src
.
data
<
T
>
();
// why must be int?
const
int
*
p_index
=
index
.
data
<
int
>
();
T
*
p_output
=
output
->
data
<
T
>
();
...
...
python/paddle/fluid/framework.py
浏览文件 @
1f89249a
...
...
@@ -744,7 +744,7 @@ class Operator(object):
if
_in_imperative_mode
():
if
type
is
None
:
raise
ValueError
(
"`type` to initilized an Operator can not be None."
)
"`type` to initi
a
lized an Operator can not be None."
)
self
.
iop
=
core
.
OpBase
(
type
)
# TODO(minqiyang): remove these lines after we take apart all
...
...
python/paddle/fluid/imperative/base.py
浏览文件 @
1f89249a
...
...
@@ -55,7 +55,8 @@ def to_variable(value, block=None):
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
name
=
None
,
shape
=
value
.
shape
,
dtype
=
value
.
dtype
)
dtype
=
value
.
dtype
,
stop_gradient
=
True
)
var
=
py_var
.
_ivar
.
value
()
tensor
=
var
.
get_tensor
()
tensor
.
set
(
value
,
framework
.
_current_expected_place
())
...
...
python/paddle/fluid/imperative/tracer.py
浏览文件 @
1f89249a
...
...
@@ -14,7 +14,9 @@
from
__future__
import
print_function
import
sys
import
six
from
six.moves
import
reduce
from
collections
import
defaultdict
from
paddle.fluid
import
core
...
...
@@ -49,7 +51,16 @@ class Tracer(core.Tracer):
def
trace_op
(
self
,
op
,
stop_gradient
=
False
):
# record op's trace id
op
.
iop
.
_trace_id
=
self
.
_trace_id
"""
all_input_stop_grads = True
for vars in op.inputs.values():
for v in vars:
sys.stderr.write('%s %s
\n
' % (v.name, v.stop_gradient))
all_input_stop_grads &= v.stop_gradient
stop_gradient = False if not stop_gradient else True
stop_gradient = all_input_stop_grads | stop_gradient
"""
backward_refs
=
self
.
trace
(
op
.
iop
,
op
.
inputs
,
op
.
outputs
,
op
.
attrs
,
framework
.
_current_expected_place
(),
stop_gradient
)
...
...
python/paddle/fluid/initializer.py
浏览文件 @
1f89249a
...
...
@@ -756,7 +756,7 @@ class NumpyArrayInitializer(Initializer):
values
=
[
int
(
v
)
for
v
in
self
.
_value
.
flat
]
else
:
raise
ValueError
(
"Unsupported dtype %s"
,
self
.
_value
.
dtype
)
if
self
.
_value
.
size
>
1024
*
1024
*
5
:
if
self
.
_value
.
size
>
1024
*
1024
*
1024
:
raise
ValueError
(
"The size of input is too big. Please consider "
"saving it to file and 'load_op' to load it"
)
op
=
block
.
_prepend_op
(
...
...
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
浏览文件 @
1f89249a
...
...
@@ -15,6 +15,7 @@
import
unittest
import
numpy
as
np
import
random
import
os
import
sys
import
paddle
...
...
@@ -23,16 +24,15 @@ import paddle.fluid.core as core
from
test_imperative_base
import
new_program_scope
from
paddle.fluid.imperative.base
import
to_variable
NUM_USERS
=
100
NUM_ITEMS
=
1000
DATA_PATH
=
os
.
environ
.
get
(
'DATA_PATH'
,
''
)
BATCH_SIZE
=
int
(
os
.
environ
.
get
(
'BATCH_SIZE'
,
256
))
NUM_BATCHES
=
int
(
os
.
environ
.
get
(
'NUM_BATCHES'
,
2
))
NUM_EPOCHES
=
int
(
os
.
environ
.
get
(
'NUM_EPOCHES'
,
1
))
BATCH_SIZE
=
32
NUM_BATCHES
=
2
class
MLP
(
fluid
.
imperative
.
Layer
):
class
DMF
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
MLP
,
self
).
__init__
(
name_scope
)
super
(
DMF
,
self
).
__init__
(
name_scope
)
self
.
_user_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_item_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
...
...
@@ -61,9 +61,9 @@ class MLP(fluid.imperative.Layer):
return
fluid
.
layers
.
elementwise_mul
(
users
,
items
)
class
DMF
(
fluid
.
imperative
.
Layer
):
class
MLP
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
DMF
,
self
).
__init__
(
name_scope
)
super
(
MLP
,
self
).
__init__
(
name_scope
)
self
.
_user_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_item_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_match_layers
=
[]
...
...
@@ -87,21 +87,36 @@ class DMF(fluid.imperative.Layer):
class
DeepCF
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
):
def
__init__
(
self
,
name_scope
,
num_users
,
num_items
,
matrix
):
super
(
DeepCF
,
self
).
__init__
(
name_scope
)
self
.
_num_users
=
num_users
self
.
_num_items
=
num_items
self
.
_rating_matrix
=
self
.
create_parameter
(
None
,
matrix
.
shape
,
matrix
.
dtype
,
is_bias
=
False
,
default_initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
matrix
))
self
.
_rating_matrix
.
_stop_gradient
=
True
self
.
_user_emb
=
fluid
.
imperative
.
Embedding
(
self
.
full_name
(),
[
NUM_USERS
,
256
])
self
.
_item_emb
=
fluid
.
imperative
.
Embedding
(
self
.
full_name
(),
[
NUM_ITEMS
,
256
])
#
self._user_emb = fluid.imperative.Embedding(self.full_name(),
# [self._num_users
, 256])
#
self._item_emb = fluid.imperative.Embedding(self.full_name(),
# [self._num_items
, 256])
self
.
_mlp
=
MLP
(
self
.
full_name
())
self
.
_dmf
=
DMF
(
self
.
full_name
())
self
.
_match_fc
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
1
,
act
=
'sigmoid'
)
def
forward
(
self
,
users
,
items
):
users_emb
=
self
.
_user_emb
(
users
)
items_emb
=
self
.
_item_emb
(
items
)
# users_emb = self._user_emb(users)
# items_emb = self._item_emb(items)
sys
.
stderr
.
write
(
'forward: %s
\n
'
%
users
.
_stop_gradient
)
users_emb
=
fluid
.
layers
.
gather
(
self
.
_rating_matrix
,
users
)
items_emb
=
fluid
.
layers
.
gather
(
fluid
.
layers
.
transpose
(
self
.
_rating_matrix
,
[
1
,
0
]),
items
)
users_emb
.
stop_gradient
=
True
items_emb
.
stop_gradient
=
True
mlp_predictive
=
self
.
_mlp
(
users_emb
,
items_emb
)
dmf_predictive
=
self
.
_dmf
(
users_emb
,
items_emb
)
...
...
@@ -116,40 +131,92 @@ def get_data():
user_ids
=
[]
item_ids
=
[]
labels
=
[]
matrix
=
np
.
zeros
([
100
,
1000
],
dtype
=
np
.
float32
)
NUM_USERS
=
100
NUM_ITEMS
=
1000
for
uid
in
range
(
NUM_USERS
):
for
iid
in
range
(
NUM_ITEMS
):
# 10% positive
label
=
float
(
random
.
randint
(
1
,
10
)
==
1
)
label
=
float
(
random
.
randint
(
1
,
6
)
==
1
)
user_ids
.
append
(
uid
)
item_ids
.
append
(
iid
)
labels
.
append
(
label
)
indices
=
np
.
arange
(
NUM_USERS
*
NUM_ITEMS
)
matrix
[
uid
,
iid
]
=
label
indices
=
np
.
arange
(
len
(
user_ids
))
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int32
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int32
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
),
NUM_USERS
,
NUM_ITEMS
,
matrix
def
load_data
(
DATA_PATH
):
sys
.
stderr
.
write
(
'loading from %s
\n
'
%
DATA_PATH
)
likes
=
dict
()
num_users
=
-
1
num_items
=
-
1
with
open
(
DATA_PATH
,
'r'
)
as
f
:
for
l
in
f
.
readlines
():
uid
,
iid
,
rating
=
[
int
(
v
)
for
v
in
l
.
split
(
'
\t
'
)]
num_users
=
max
(
num_users
,
uid
+
1
)
num_items
=
max
(
num_items
,
iid
+
1
)
if
float
(
rating
)
>
0.0
:
likes
[(
uid
,
iid
)]
=
1.0
user_ids
=
[]
item_ids
=
[]
labels
=
[]
matrix
=
np
.
zeros
([
num_users
,
num_items
],
dtype
=
np
.
float32
)
for
uid
,
iid
in
likes
.
keys
():
user_ids
.
append
(
uid
)
item_ids
.
append
(
iid
)
labels
.
append
(
1.0
)
matrix
[
uid
,
iid
]
=
1.0
negative
=
0
while
negative
<
3
:
nuid
=
random
.
randint
(
0
,
num_users
-
1
)
niid
=
random
.
randint
(
0
,
num_items
-
1
)
if
(
nuid
,
niid
)
not
in
likes
:
negative
+=
1
user_ids
.
append
(
nuid
)
item_ids
.
append
(
niid
)
labels
.
append
(
0.0
)
indices
=
np
.
arange
(
len
(
user_ids
))
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int
64
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int
64
)[
indices
]
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int
32
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int
32
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
)
np
.
expand_dims
(
labels_np
,
-
1
)
,
num_users
,
num_items
,
matrix
class
TestImperativeDeepCF
(
unittest
.
TestCase
):
def
test_
gan_float32
(
self
):
def
test_
deefcf
(
self
):
seed
=
90
users_np
,
items_np
,
labels_np
=
get_data
()
if
DATA_PATH
:
(
users_np
,
items_np
,
labels_np
,
num_users
,
num_items
,
matrix
)
=
load_data
(
DATA_PATH
)
else
:
(
users_np
,
items_np
,
labels_np
,
num_users
,
num_items
,
matrix
)
=
get_data
()
startup
=
fluid
.
Program
()
startup
.
random_seed
=
seed
main
=
fluid
.
Program
()
main
.
random_seed
=
seed
"""
scope = fluid.core.Scope()
with new_program_scope(main=main, startup=startup, scope=scope):
users
=
fluid
.
layers
.
data
(
'users'
,
[
1
],
dtype
=
'int
64
'
)
items
=
fluid
.
layers
.
data
(
'items'
,
[
1
],
dtype
=
'int
64
'
)
users = fluid.layers.data('users', [1], dtype='int
32
')
items = fluid.layers.data('items', [1], dtype='int
32
')
labels = fluid.layers.data('labels', [1], dtype='float32')
deepcf
=
DeepCF
(
'deepcf'
)
deepcf = DeepCF('deepcf'
, num_users, num_items, matrix
)
prediction = deepcf(users, items)
loss = fluid.layers.reduce_sum(
fluid.layers.log_loss(prediction, labels))
...
...
@@ -159,35 +226,45 @@ class TestImperativeDeepCF(unittest.TestCase):
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
exe.run(startup)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
static_loss
=
exe
.
run
(
main
,
feed
=
{
users
.
name
:
users_np
[
slice
:
slice
+
BATCH_SIZE
],
items
.
name
:
items_np
[
slice
:
slice
+
BATCH_SIZE
],
labels
.
name
:
labels_np
[
slice
:
slice
+
BATCH_SIZE
]
},
fetch_list
=
[
loss
])[
0
]
sys
.
stderr
.
write
(
'static loss %s
\n
'
%
static_loss
)
for e in range(NUM_EPOCHES):
sys.stderr.write('epoch %d
\n
' % e)
for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
if slice + BATCH_SIZE >= users_np.shape[0]:
break
static_loss = exe.run(
main,
feed={
users.name: users_np[slice:slice + BATCH_SIZE],
items.name: items_np[slice:slice + BATCH_SIZE],
labels.name: labels_np[slice:slice + BATCH_SIZE]
},
fetch_list=[loss])[0]
sys.stderr.write('static loss %s
\n
' % static_loss)
"""
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
deepcf
=
DeepCF
(
'deepcf'
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
prediction
=
deepcf
(
to_variable
(
users_np
[
slice
:
slice
+
BATCH_SIZE
]),
to_variable
(
items_np
[
slice
:
slice
+
BATCH_SIZE
]))
loss
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction
,
to_variable
(
labels_np
[
slice
:
slice
+
BATCH_SIZE
])))
loss
.
_backward
()
adam
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
)
adam
.
minimize
(
loss
)
deepcf
.
clear_gradients
()
dy_loss
=
loss
.
_numpy
()
deepcf
=
DeepCF
(
'deepcf'
,
num_users
,
num_items
,
matrix
)
sys
.
stderr
.
write
(
'matrix: %s
\n
'
%
deepcf
.
_rating_matrix
.
_numpy
())
for
e
in
range
(
NUM_EPOCHES
):
sys
.
stderr
.
write
(
'epoch %d
\n
'
%
e
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
prediction
=
deepcf
(
to_variable
(
users_np
[
slice
:
slice
+
BATCH_SIZE
]),
to_variable
(
items_np
[
slice
:
slice
+
BATCH_SIZE
]))
loss
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction
,
to_variable
(
labels_np
[
slice
:
slice
+
BATCH_SIZE
])))
loss
.
_backward
()
adam
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
)
adam
.
minimize
(
loss
)
deepcf
.
clear_gradients
()
dy_loss
=
loss
.
_numpy
()
sys
.
stderr
.
write
(
'dynamic loss: %s
\n
'
%
dy_loss
)
sys
.
stderr
.
write
(
'matrix: %s
\n
'
%
deepcf
.
_rating_matrix
.
_numpy
())
self
.
assertEqual
(
static_loss
,
dy_loss
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录