framework.py 74.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
P
peizhilin 已提交
19
import os
F
fengjiayi 已提交
20
import re
21
import six
22
import sys
23

Y
Yu Yang 已提交
24
import numpy as np
Q
qiaolongfei 已提交
25

M
minqiyang 已提交
26
from .. import compat as cpt
27
from .proto import framework_pb2
28 29
try:
    from . import core
30
except ImportError as e:
P
peizhilin 已提交
31 32 33 34 35 36 37 38 39 40 41 42
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
43
except Exception as e:
44
    raise e
45
from . import unique_name
Y
Yu Yang 已提交
46

47
__all__ = [
48 49 50 51
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
52
    'name_scope',
53
]
Y
Yu Yang 已提交
54

Q
qiaolongfei 已提交
55 56 57 58
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
59 60
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

61 62 63 64 65 66 67 68 69 70
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
111

112 113 114 115
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
116 117
          with name_scope("attention"):
             ...
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
137 138 139
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
140 141 142 143


def grad_var_name(var_name):
    """
144 145
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
146 147 148
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
149

150
def convert_np_dtype_to_dtype_(np_dtype):
151 152
    """
    Convert the data type in numpy to the data type in Paddle
153

154
    Args:
155
        np_dtype(np.dtype): the data type in numpy.
156

157 158
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
159 160

    """
161 162
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
163
        return core.VarDesc.VarType.FP32
164
    elif dtype == np.float64:
165
        return core.VarDesc.VarType.FP64
166
    elif dtype == np.float16:
167
        return core.VarDesc.VarType.FP16
168
    elif dtype == np.int32:
169
        return core.VarDesc.VarType.INT32
170
    elif dtype == np.int16:
171
        return core.VarDesc.VarType.INT16
172
    elif dtype == np.int64:
173
        return core.VarDesc.VarType.INT64
174
    elif dtype == np.bool:
175
        return core.VarDesc.VarType.BOOL
176 177
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
178 179
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
180 181
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
182
    else:
M
minqiyang 已提交
183
        raise ValueError("Not supported numpy dtype %s" % dtype)
184 185 186


def dtype_is_floating(dtype):
187 188 189
    """
    Check the data type is floating or not.
    Args:
190
        dtype(np.dtype|core.VarDesc.VarType): data type.
191 192 193 194 195
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
196
    if not isinstance(dtype, core.VarDesc.VarType):
197 198
        dtype = convert_np_dtype_to_dtype_(dtype)

199 200 201 202
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
203 204


Y
Yang Yang(Tony) 已提交
205
def _debug_string_(proto, throw_on_error=True):
206 207 208 209 210 211 212 213 214 215 216
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
217
    error_fields = list()
Y
Yang Yang(Tony) 已提交
218
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
219 220
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
221 222 223
    return proto.__str__()


X
Xin Pan 已提交
224
class Variable(object):
225
    """
226 227 228
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
229
    two variables in different blocks could have the same name.
230

231 232
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
233

234
    Most of a Variable's member variables can be setted to be None. It mean
235
    it is not available or will be specified later.
236 237

    Args:
238
        block(Block): The block that the variable belongs to.
239 240
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
241 242
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
243
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
244
            Some kinds of variable do not contain shape, just set it to None.
245 246 247
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
248
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
249
            series data.
250
            Default: None
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
273 274
    """

Y
Yu Yang 已提交
275 276
    def __init__(self,
                 block,
Y
Yu Yang 已提交
277
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
278 279 280 281
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
282
                 capacity=None,
Q
QI JUN 已提交
283
                 persistable=None,
F
fengjiayi 已提交
284
                 error_clip=None,
Y
Yu Yang 已提交
285
                 stop_gradient=False,
F
fengjiayi 已提交
286
                 is_data=False,
Y
Yu Yang 已提交
287
                 **kwargs):
Y
Yu Yang 已提交
288
        self.block = block
F
fengjiayi 已提交
289
        self.error_clip = error_clip
Y
Yu Yang 已提交
290 291

        if name is None:
Y
Yu Yang 已提交
292
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
293
        is_new_var = False
M
minqiyang 已提交
294
        name = cpt.to_text(name)
M
minqiyang 已提交
295
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
296 297

        if self.desc is None:
M
minqiyang 已提交
298
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
299
            is_new_var = True
Y
Yu Yang 已提交
300

Y
Yu Yang 已提交
301 302 303 304 305 306 307 308
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
309
        if shape is not None:
Y
Yu Yang 已提交
310
            if is_new_var:
311
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
312 313 314 315 316 317 318 319
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
320
        if dtype is not None:
321
            if not isinstance(dtype, core.VarDesc.VarType):
322
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
323
            if is_new_var:
F
fengjiayi 已提交
324
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
325
            else:
F
fengjiayi 已提交
326
                old_dtype = self.dtype
Q
QI JUN 已提交
327
                if dtype != old_dtype:
Y
Yu Yang 已提交
328 329 330 331 332
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
333 334

        if lod_level is not None:
Y
Yu Yang 已提交
335
            if is_new_var:
336
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
337 338 339 340 341 342 343
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
344 345 346 347 348 349 350 351 352 353 354
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

355 356 357 358 359 360 361 362
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
363
        self.block.vars[name] = self
Y
Yu Yang 已提交
364
        self.op = None
Y
Yu Yang 已提交
365
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
366
        self.is_data = is_data
X
Xin Pan 已提交
367 368 369
        if _in_imperative_mode():
            self._ivar = core.VarBase()
            self._ivar.desc = self.desc
Y
Yu Yang 已提交
370

371 372 373 374 375 376 377
    def _numpy(self):
        scope = _imperative_tracer().get_scope(self.block.desc)
        tensor = core.get_variable_tensor(scope, self.desc.name())
        return np.array(tensor)

    def _backward(self):
        scope = _imperative_tracer().get_scope(self.block.desc)
X
Xin Pan 已提交
378
        self._ivar._run_backward(scope)
379 380

    def _gradient(self):
X
Xin Pan 已提交
381
        return np.array(self._ivar._grad())
382

383
    def __str__(self):
Y
Yang Yang(Tony) 已提交
384 385
        return self.to_string(True)

F
update  
fengjiayi 已提交
386
    def to_string(self, throw_on_error, with_details=False):
387 388 389 390
        """
        Get debug string.

        Args:
391 392
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
393
            with_details(bool): more details about variables and parameters
394 395
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
396

397 398
        Returns:
            str: The debug string.
399
        """
F
update  
fengjiayi 已提交
400 401
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
402
        protostr = self.desc.serialize_to_string()
403
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
404 405 406 407
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
408 409
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
410
        return res_str
411 412 413

    __repr__ = __str__

W
Wu Yi 已提交
414
    def _set_desc(self, input):
415 416 417 418 419 420 421 422 423
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
424 425
        self.desc = input

426 427 428 429
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
430 431 432 433
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
434 435
    @property
    def name(self):
M
minqiyang 已提交
436
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
437

T
typhoonzero 已提交
438 439 440 441
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
442 443 444
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
445
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
446 447

    @property
F
fengjiayi 已提交
448 449
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
450 451 452

    @property
    def lod_level(self):
453
        return self.desc.lod_level()
Y
Yu Yang 已提交
454

Y
Yu Yang 已提交
455 456 457 458
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
459
    def _set_error_clip(self, error_clip):
460 461 462 463 464 465 466 467 468
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
469 470
        self.error_clip = error_clip

Y
Yu Yang 已提交
471

F
fengjiayi 已提交
472 473 474
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
475

476 477
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
478 479 480 481
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
482
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
483 484 485 486 487
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
488 489 490 491
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
492 493 494 495 496 497 498 499 500
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
501
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
502 503 504 505 506 507
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
508 509 510 511 512 513 514 515
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
516 517
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
518 519
        return self.op_proto_map[type]

520 521 522 523
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
524
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
525
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
526 527
        }

F
fengjiayi 已提交
528

X
Xin Pan 已提交
529
class Operator(object):
530
    """
531 532 533 534 535 536 537
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
538
        type(str): The type of operator. Default None.
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
559
        Block.append_op or Block._prepend_op instead.
560 561 562 563 564 565 566 567 568 569

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
570
    """
571 572 573
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
574 575
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
576
    }
577

Y
Yu Yang 已提交
578 579
    def __init__(self,
                 block,
Y
Yu Yang 已提交
580
                 desc,
Y
Yu Yang 已提交
581 582 583 584 585
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
586
        self.desc = desc
G
gongweibao 已提交
587 588 589 590 591
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
592 593 594 595
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
596 597
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
598 599 600

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
601 602
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
603

G
gongweibao 已提交
604 605
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
606

F
fengjiayi 已提交
607 608 609 610 611
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
612
        self.desc.set_type(type)
F
fengjiayi 已提交
613
        proto = OpProtoHolder.instance().get_op_proto(type)
614

615 616 617
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
618 619
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
620
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
621 622
                    return True
            return False
Q
QI JUN 已提交
623

Y
Yang Yang(Tony) 已提交
624 625 626 627 628 629 630
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
631 632 633 634
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
635 636
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
637 638 639
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
640
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
641
                            in_arg_names.append(arg)
642 643
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
644
                        else:
M
minqiyang 已提交
645
                            in_arg_names.append(cpt.to_text(arg.name))
646
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
647 648
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
649

Y
Yu Yang 已提交
650
        if outputs is not None:
651 652 653 654 655 656 657
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
658 659
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
660 661 662
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
663

F
fengjiayi 已提交
664
            for out_proto in proto.outputs:
665 666 667 668
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
669 670
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
671 672 673
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
674
                    out_arg_names.append(cpt.to_text(arg.name))
675 676
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
677

G
gongweibao 已提交
678 679
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
680
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
681
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
682
                attr_name = attr.name
G
gongweibao 已提交
683
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
684
                    continue
G
gongweibao 已提交
685
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
686 687
                self._update_desc_attr(attr_name, attr_val)

688
        self.desc.check_attrs()
W
Wu Yi 已提交
689
        if self._has_kernel(type):
Q
QI JUN 已提交
690
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
691
            self.desc.infer_shape(self.block.desc)
X
Xin Pan 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
            self.inputs = []
            if inputs is not None:
                for inp in inputs.values():
                    if isinstance(inp, Variable):
                        self.inputs.append(inp)
                    elif isinstance(inp, list) or isinstance(inp, tuple):
                        self.inputs.extend(inp[:])
            self.outputs = []
            if outputs is not None:
                for out in outputs.values():
                    if isinstance(out, Variable):
                        self.outputs.append(out)
                    elif isinstance(out, list) or isinstance(out, tuple):
                        self.outputs.extend(out[:])
F
fengjiayi 已提交
709

W
Wu Yi 已提交
710
    def _has_kernel(self, op_type):
711 712
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
713
    def to_string(self, throw_on_error):
714
        """
715 716
        Get debug string.

717
        Args:
718 719
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
720

721 722
        Returns:
            str: The debug string.
723 724

        """
725
        protostr = self.desc.serialize_to_string()
726
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
727 728 729 730
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
731 732 733

    __repr__ = __str__

F
fengjiayi 已提交
734 735 736 737 738
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
739
        """
740
        Get the input arguments according to the input parameter name.
741

742 743
        Args:
            name(str): The input parameter name.
744

745 746 747
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
748
        """
F
fengjiayi 已提交
749 750
        return self.desc.input(name)

W
Wu Yi 已提交
751
    def _rename_input(self, old_name, new_name):
752 753 754 755 756 757 758 759 760 761
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
762
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
763

W
Wu Yi 已提交
764
    def _rename_output(self, old_name, new_name):
765 766 767 768 769 770 771 772 773 774
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
775
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
776

F
fengjiayi 已提交
777 778 779 780
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
781 782 783 784 785 786 787 788
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
789
    def output(self, name):
790
        """
791
        Get output arguments by the output parameter name.
792

793 794
        Args:
            name(str): The output parameter name.
795

796 797 798
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
799
        """
F
fengjiayi 已提交
800 801 802 803 804 805
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

806 807 808 809 810 811 812 813
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
814
    def has_attr(self, name):
815
        """
816 817
        Whether this Operator has the attribute with name or not.

818
        Args:
819
            name(str): the attribute name.
820

821 822
        Returns:
            bool: True if has this attribute.
823 824

        """
F
fengjiayi 已提交
825 826 827
        return self.desc.has_attr(name)

    def attr_type(self, name):
828
        """
829
        Get the type of attribute by attribute's name.
830

831 832
        Args:
            name(str): the attribute name.
833

834 835
        Returns:
            core.AttrType: the attribute type.
836
        """
F
fengjiayi 已提交
837 838
        return self.desc.attr_type(name)

W
Wu Yi 已提交
839
    def _set_attr(self, name, val):
840 841 842 843 844 845 846 847 848 849
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
863 864
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
865 866
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
867
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
868 869 870 871
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
872
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
873

F
fengjiayi 已提交
874 875 876 877 878
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
879
        """
880 881
        Get the attribute by name.

882
        Args:
883
            name(str): the attribute name.
884

885 886
        Returns:
            bool|int|str|float|list: The attribute value. The return value
887 888
            can be any valid attribute type.
        """
F
fengjiayi 已提交
889
        return self.desc.attr(name)
Y
Yu Yang 已提交
890

W
Wu Yi 已提交
891
    def _block_attr_id(self, name):
892
        """
G
gongweibao 已提交
893
        Get the block attribute's id by name.
894

895 896
        Args:
            name(str): the attribute name.
897

898 899
        Returns:
            int: the block index.
900
        """
W
Wu Yi 已提交
901
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
902

W
Wu Yi 已提交
903
    def _block_attr(self, name):
G
gongweibao 已提交
904 905 906 907 908 909 910 911 912 913
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
914
        id = self._block_attr_id(name)
G
gongweibao 已提交
915 916 917
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
918
    def _blocks_attr(self, name):
G
gongweibao 已提交
919 920 921 922 923 924 925 926 927 928
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
929
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
930 931 932 933 934
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
935
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
936 937 938 939 940 941 942 943 944 945
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
946
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
947

J
JiayiFeng 已提交
948
    def all_attrs(self):
F
fengjiayi 已提交
949
        """
950 951 952
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
953
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
954 955 956 957
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
958 959
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
960
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
961 962 963
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
964
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
965 966 967 968
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
969 970
        return attr_map

Y
Yu Yang 已提交
971

Y
Yu Yang 已提交
972
class Block(object):
973 974 975 976 977 978 979 980 981 982 983 984 985 986
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
987
        use `Program._create_block()` to create a block.
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1002
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1003
        self.desc = program.desc.block(idx)
1004
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1005
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1006
        self.program = program
1007
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1008

1009
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1010 1011
        return self.to_string(True)

F
fengjiayi 已提交
1012 1013
    def to_string(self, throw_on_error, with_details=False):
        """
1014 1015
        Get debug string.

F
fengjiayi 已提交
1016 1017
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1018
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1019
            with_details(bool): more details about variables and parameters
1020 1021
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1022

1023 1024
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1025 1026 1027 1028
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1029
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1030 1031
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1032
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1033
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1034
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1035
            for op in self.ops:
F
fengjiayi 已提交
1036 1037
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1038 1039 1040
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1041 1042
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1043 1044
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1045 1046 1047

    __repr__ = __str__

Y
Yu Yang 已提交
1048 1049
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1050
        return self.desc.parent
Y
Yu Yang 已提交
1051

Y
Yu Yang 已提交
1052 1053 1054 1055
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1056
    def _set_forward_block_idx(self, idx):
1057 1058 1059 1060 1061 1062 1063 1064 1065
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1066
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1067

Y
Yu Yang 已提交
1068 1069
    @property
    def idx(self):
Y
Yu Yang 已提交
1070
        return self.desc.id
Y
Yu Yang 已提交
1071

Q
Qiao Longfei 已提交
1072
    def var(self, name):
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1086
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1087 1088 1089
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1090 1091
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1092
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1093
        return v
Q
Qiao Longfei 已提交
1094

X
Xin Pan 已提交
1095
    def _find_var_recursive(self, name):
1096 1097 1098 1099 1100 1101 1102
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1103
            Variable: the Variable with the giving name. Or None if not found.
1104
        """
Y
Yu Yang 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1129
        return None
Y
Yu Yang 已提交
1130

X
Xin Pan 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1150

Q
Qiao Longfei 已提交
1151
    def all_parameters(self):
1152
        return list(self.iter_parameters())
1153

1154
    def iter_parameters(self):
M
minqiyang 已提交
1155
        return (item[1] for item in six.iteritems(self.vars)
1156
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1157

Y
Yu Yang 已提交
1158
    def create_var(self, *args, **kwargs):
1159
        var = Variable(block=self, *args, **kwargs)
1160 1161
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1162
        return var
Y
Yu Yang 已提交
1163

Q
Qiao Longfei 已提交
1164 1165 1166
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1167
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1168 1169
        """
        Rename variable in vars and ops' inputs and outputs
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1182
        """
M
minqiyang 已提交
1183 1184
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1185

T
typhoonzero 已提交
1186
        if not self.has_var(name):
1187
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1188 1189
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1190
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1191 1192 1193 1194 1195 1196 1197
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1198
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1199 1200 1201 1202
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1203
        orig_var_type = v.type
M
minqiyang 已提交
1204
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1205
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1206
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1207
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1208 1209 1210 1211
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1212
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1213 1214 1215 1216 1217 1218 1219
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1220
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1221 1222
            var = Variable(
                self,
T
typhoonzero 已提交
1223
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1224 1225 1226 1227
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1228
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1229 1230 1231
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1232
        self._sync_with_cpp()
1233
        return var
T
typhoonzero 已提交
1234

W
Wu Yi 已提交
1235 1236
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1237
        self.desc._remove_var(cpt.to_bytes(name))
1238 1239
        del self.vars[name]

Y
Yu Yang 已提交
1240 1241
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1242
        param = Parameter(global_block, *args, **kwargs)
1243
        if 'initializer' in kwargs:
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1264
        return param
Y
Yu Yang 已提交
1265

Y
Yu Yang 已提交
1266
    def append_op(self, *args, **kwargs):
1267 1268 1269 1270 1271 1272
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1273
        op_desc = self.desc.append_op()
1274
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
1275
        if _in_imperative_mode():
X
Xin Pan 已提交
1276 1277
            _imperative_tracer().trace(op.iop, [v._ivar for v in op.inputs],
                                       [v._ivar for v in op.outputs], self.desc)
Y
Yu Yang 已提交
1278 1279 1280
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1281
    def _insert_op(self, index, *args, **kwargs):
1282 1283 1284 1285 1286 1287 1288 1289 1290
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1291 1292
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1293 1294 1295 1296
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1297
    def _remove_op(self, index):
1298 1299 1300 1301 1302 1303 1304 1305 1306
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1307 1308
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1309 1310
        del self.ops[index]

W
Wu Yi 已提交
1311
    def _slice_ops(self, start, end):
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1322
        return self.ops[start:end]
Y
Yancey1989 已提交
1323

W
Wu Yi 已提交
1324 1325
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1326
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1327
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1328 1329
        return op

W
Wu Yi 已提交
1330
    def _sync_with_cpp(self):
1331
        """
1332 1333
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1334
        """
Q
Qiao Longfei 已提交
1335 1336 1337 1338 1339
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1340
        # sync variables removed from c++ end
1341
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1342
            if not self.desc.find_var(cpt.to_bytes(var)):
1343 1344
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1345
        # sync operators from cpp
1346 1347 1348 1349
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1366 1367 1368 1369 1370

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1371
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1372 1373 1374 1375 1376 1377 1378

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1392 1393 1394 1395
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1396
    def _copy_param_info_from(self, other):
1397
        """
1398 1399
        Copy the information of parameters from the other block.

1400
        Args:
1401 1402 1403 1404 1405
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1406 1407 1408 1409 1410

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1411 1412
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1413
        for p in other.iter_parameters():
1414 1415 1416
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1417
                raise ValueError("_copy_param_info_from should be invoked with "
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1430
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1431
                error_clip=p.error_clip,
1432 1433 1434
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1435
    def _clone_variable(self, var):
1436 1437
        """
        Clone a variable into current block.
1438

1439 1440 1441 1442
        Args:
            var: the variable to be cloned.

        Returns:
1443
            Variable: the new  variable cloned from 'var' in current block.
1444 1445
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1446 1447 1448 1449 1450
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1451 1452
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1453
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1454 1455 1456 1457 1458 1459
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1460 1461
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1462 1463 1464 1465 1466 1467 1468
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1469 1470
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1471
        return ret_var
1472

Y
Yu Yang 已提交
1473 1474

class Program(object):
D
dzhwinter 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1486
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1487 1488

    Returns:
Y
yuyang18 已提交
1489
        A empty program.
D
dzhwinter 已提交
1490 1491

    Examples:
Y
yuyang18 已提交
1492 1493 1494 1495 1496 1497
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1498 1499 1500

    """

1501 1502
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1503 1504
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1505
        self._seed = 0
Y
yuyang18 已提交
1506
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1507
        self._op_role_var = []
T
tangwei12 已提交
1508 1509 1510 1511

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1512
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1513
        self._endpoints = []
1514
        self._trainers_endpoints = []
T
tangwei12 已提交
1515
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1516 1517 1518

    @property
    def op_role(self):
Y
yuyang18 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1532 1533 1534 1535 1536 1537 1538 1539
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1540 1541 1542 1543 1544 1545 1546
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1547 1548 1549 1550
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1551
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1552 1553

    @contextlib.contextmanager
W
Wu Yi 已提交
1554
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1555 1556 1557 1558 1559 1560 1561
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1562
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1563 1564 1565 1566

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1567
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1568 1569
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1570 1571 1572
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1573 1574
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1575 1576 1577 1578
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1579
        yield
X
Xin Pan 已提交
1580 1581
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1582

1583
    @contextlib.contextmanager
X
Xin Pan 已提交
1584
    def _lr_schedule_guard(self, is_with_opt=False):
1585 1586 1587 1588 1589 1590 1591
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1592 1593 1594 1595
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1596 1597 1598 1599 1600 1601 1602

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1603 1604 1605 1606

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1607 1608
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1609 1610
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1611 1612 1613
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1614 1615
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1616

1617
    def __str__(self):
Y
yuyang18 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1627 1628
        return self.to_string(True)

F
fengjiayi 已提交
1629 1630 1631
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1632

F
fengjiayi 已提交
1633
        Args:
Y
yuyang18 已提交
1634 1635
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1636

Y
yuyang18 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1657 1658
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1659 1660
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1661

W
Wu Yi 已提交
1662
    def _get_desc(self):
Y
yuyang18 已提交
1663 1664 1665 1666 1667 1668 1669
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1670 1671
        return self.desc

X
version  
Xin Pan 已提交
1672 1673 1674
    def _version(self):
        return self.desc._version()

1675
    def clone(self, for_test=False):
Y
yuyang18 已提交
1676 1677 1678
        """
        Create a new, duplicated program.

1679

Y
yuyang18 已提交
1680 1681 1682 1683
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1684

Y
yuyang18 已提交
1685 1686 1687 1688
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1689 1690 1691 1692 1693
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1694 1695

        Args:
Y
yuyang18 已提交
1696 1697
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1698

D
dzhwinter 已提交
1699
        Returns:
Y
yuyang18 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1753 1754
        """
        if for_test:
X
Xin Pan 已提交
1755
            p = self._inference_optimize(prune_read_op=False)
1756
        else:
1757
            p = Program()
G
gongweibao 已提交
1758 1759
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1760
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1761 1762 1763
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1764 1765 1766 1767

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1768
            p._sync_with_cpp()
1769

W
Wu Yi 已提交
1770
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1771
        p._copy_data_info_from(self)
1772
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1773
        return p
1774

W
Wu Yi 已提交
1775
    def _prune(self, targets):
Y
yuyang18 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1791 1792 1793 1794 1795 1796
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1797 1798
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1799
                    # and we need to find the current op that generate this
1800 1801 1802 1803 1804 1805 1806 1807
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1808
                    t = t.op
1809 1810 1811 1812
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1813
                else:
1814 1815
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1816 1817 1818 1819

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1820 1821 1822
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1823
        res._sync_with_cpp()
1824 1825
        return res

X
Xin Pan 已提交
1826
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1827
        """
F
fengjiayi 已提交
1828 1829 1830 1831 1832
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1833
        3. change the :code:`is_test`
Y
yuyang18 已提交
1834 1835 1836
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1837
        Args:
X
Xin Pan 已提交
1838 1839
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1840

Y
yuyang18 已提交
1841 1842 1843 1844 1845 1846
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1847
        res = Program()
1848
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1849 1850 1851 1852

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1853
        if prune_read_op:
1854 1855 1856 1857 1858 1859 1860 1861 1862
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1863
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1864 1865

        # change all `is_test` attributes to True
M
minqiyang 已提交
1866
        for i in six.moves.range(res.desc.num_blocks()):
1867
            block = res.desc.block(i)
M
minqiyang 已提交
1868
            for j in six.moves.range(block.op_size()):
1869 1870
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1871
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1872 1873 1874
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1875
        res._sync_with_cpp()
1876 1877
        return res

1878 1879
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1880 1881 1882 1883 1884 1885 1886
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1887
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1888 1889 1890 1891

        Returns:
            Program: A deserialized program desc.
        """
1892 1893
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1894
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1895
        p._sync_with_cpp()
1896
        return p
Y
Yu Yang 已提交
1897

D
dzhwinter 已提交
1898 1899
    @property
    def random_seed(self):
Y
yuyang18 已提交
1900 1901 1902 1903 1904 1905
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1906 1907
        return self._seed

Q
qiaolongfei 已提交
1908 1909
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1910 1911 1912
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1913 1914
        return self.desc.num_blocks()

D
dzhwinter 已提交
1915 1916 1917 1918 1919 1920
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1921
    def __repr__(self):
1922
        return self.__str__()
1923

Y
Yu Yang 已提交
1924
    def global_block(self):
Y
yuyang18 已提交
1925 1926 1927
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1928 1929
        return self.blocks[0]

Q
Qiao Longfei 已提交
1930
    def block(self, index):
Y
yuyang18 已提交
1931 1932 1933 1934 1935 1936 1937 1938
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1939 1940
        return self.blocks[index]

Y
Yu Yang 已提交
1941
    def current_block(self):
Y
yuyang18 已提交
1942 1943 1944 1945
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1946 1947
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1948
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1959
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1960 1961 1962
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1963 1964 1965 1966
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1967
    def _rollback(self):
Y
yuyang18 已提交
1968 1969 1970 1971 1972
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1973 1974
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1975
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1986 1987 1988
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1989
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1990

W
Wu Yi 已提交
1991
    def _copy_param_info_from(self, other):
1992
        """
1993
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1994

Y
yuyang18 已提交
1995 1996 1997
        Notes: This is a very low level API. Users should not invoke it
        directly.

1998 1999 2000 2001 2002 2003 2004
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2005
            raise TypeError("_copy_param_info_from should be invoked with "
2006 2007 2008
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2009
            raise ValueError("_copy_param_info_from should be invoked with two "
2010
                             "program, with represent the same topology")
W
Wu Yi 已提交
2011
        self.global_block()._copy_param_info_from(other.global_block())
2012

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2032
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2033 2034
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2035

Y
yuyang18 已提交
2036 2037 2038
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2039 2040 2041 2042 2043 2044 2045
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2046
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2047 2048 2049
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2050
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2051
                             "program, with represent the same topology")
2052
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2053 2054 2055
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2056
    def list_vars(self):
Y
yuyang18 已提交
2057 2058 2059 2060 2061 2062
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2063
        for each_block in self.blocks:
2064
            for each_var in list(each_block.vars.values()):
2065 2066
                yield each_var

Y
Yu Yang 已提交
2067

Y
Yu Yang 已提交
2068
class Parameter(Variable):
2069
    """
2070
    Parameter is derived from Variable. A parameter is a persistable
2071
    Variable, and will be updated by optimizers after each iteration.
2072
    The training of a neural network is essentially the updating of
2073 2074
    its parameters.

2075
    Relative to a general Variable, a Parameter has several its own
2076 2077
    member variables:

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2090 2091
    """

Y
Yu Yang 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2102 2103 2104

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2105 2106 2107 2108
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2109 2110
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2111
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2112

W
wanghaoshuang 已提交
2113
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2114

F
fengjiayi 已提交
2115 2116 2117
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2118 2119 2120
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2121

F
update  
fengjiayi 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2136
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2137
            for attr_name in additional_attr:
2138 2139
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2140 2141
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2142 2143 2144 2145
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2146

Y
Yu Yang 已提交
2147
# program is a global instance.
Y
Yu Yang 已提交
2148 2149
_main_program_ = Program()
_startup_program_ = Program()
2150

2151

2152
def default_startup_program():
Y
Yu Yang 已提交
2153
    """
Y
yuyang18 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2163

Y
Yu Yang 已提交
2164 2165 2166
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2167
    return _startup_program_
2168

2169

2170
def default_main_program():
Y
Yu Yang 已提交
2171
    """
Y
yuyang18 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2181

Y
Yu Yang 已提交
2182 2183 2184
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2185
    return _main_program_
Y
Yu Yang 已提交
2186 2187 2188 2189 2190


def switch_main_program(program):
    """
    Switch the main program to a new program.
2191

Y
Yu Yang 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2206
    Switch the startup program to a new program
Y
Yu Yang 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2222 2223 2224
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2225

Y
Yu Yang 已提交
2226
    Examples:
Y
yuyang18 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2237

Y
Yu Yang 已提交
2238
    Examples:
Y
yuyang18 已提交
2239 2240 2241 2242 2243 2244

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2245

Y
Yu Yang 已提交
2246
    Args:
Y
yuyang18 已提交
2247
        main_program(Program): New main program inside `with` statement.
2248
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2262 2263


W
Wu Yi 已提交
2264
def _get_var(name, program=None):
X
xuwei06 已提交
2265
    """
Y
yuyang18 已提交
2266
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2267

X
xuwei06 已提交
2268 2269 2270
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2271
        If None, default_global_program() will be used.
X
xuwei06 已提交
2272 2273 2274 2275 2276 2277 2278

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2279
    assert isinstance(program, Program)
X
xuwei06 已提交
2280 2281

    return program.global_block().var(name)
2282 2283 2284 2285 2286 2287 2288 2289 2290


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace