tracker.py 24.4 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import glob
F
Feng Ni 已提交
21
import re
G
George Ni 已提交
22 23
import paddle
import numpy as np
F
Feng Ni 已提交
24
from tqdm import tqdm
25
from collections import defaultdict
G
George Ni 已提交
26 27 28

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
G
George Ni 已提交
29
from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
30
from ppdet.modeling.mot.utils import MOTTimer, load_det_results, write_mot_results, save_vis_results
31
from ppdet.modeling.mot.tracker import JDETracker, DeepSORTTracker
G
George Ni 已提交
32

F
Feng Ni 已提交
33
from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric, MCMOTMetric
G
George Ni 已提交
34 35 36 37 38 39 40
import ppdet.utils.stats as stats

from .callbacks import Callback, ComposeCallback

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

41 42 43 44 45
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
MOT_ARCH_JDE = ['JDE', 'FairMOT']
MOT_ARCH_SDE = ['DeepSORT', 'ByteTrack']
MOT_DATA_TYPE = ['mot', 'mcmot', 'kitti']

G
George Ni 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
__all__ = ['Tracker']


class Tracker(object):
    def __init__(self, cfg, mode='eval'):
        self.cfg = cfg
        assert mode.lower() in ['test', 'eval'], \
                "mode should be 'test' or 'eval'"
        self.mode = mode.lower()
        self.optimizer = None

        # build MOT data loader
        self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]

        # build model
        self.model = create(cfg.architecture)

        self.status = {}
        self.start_epoch = 0

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        self._callbacks = []
        self._compose_callback = None

    def _init_metrics(self):
        if self.mode in ['test']:
            self._metrics = []
            return

        if self.cfg.metric == 'MOT':
            self._metrics = [MOTMetric(), ]
84 85
        elif self.cfg.metric == 'MCMOT':
            self._metrics = [MCMOTMetric(self.cfg.num_classes), ]
G
George Ni 已提交
86 87
        elif self.cfg.metric == 'KITTI':
            self._metrics = [KITTIMOTMetric(), ]
G
George Ni 已提交
88
        else:
89
            logger.warning("Metric not support for metric type {}".format(
G
George Ni 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
                self.cfg.metric))
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights_jde(self, weights):
        load_weight(self.model, weights, self.optimizer)

    def load_weights_sde(self, det_weights, reid_weights):
116 117 118 119
        with_detector = self.model.detector is not None
        with_reid = self.model.reid is not None

        if with_detector:
120
            load_weight(self.model.detector, det_weights)
121 122
            if with_reid:
                load_weight(self.model.reid, reid_weights)
123
        else:
124
            load_weight(self.model.reid, reid_weights)
G
George Ni 已提交
125 126 127 128 129

    def _eval_seq_jde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
130 131
                      frame_rate=30,
                      draw_threshold=0):
G
George Ni 已提交
132 133 134 135 136
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)

137
        timer = MOTTimer()
G
George Ni 已提交
138 139 140
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
141 142
        results = defaultdict(list)  # support single class and multi classes

F
Feng Ni 已提交
143
        for step_id, data in enumerate(tqdm(dataloader)):
G
George Ni 已提交
144 145 146
            self.status['step_id'] = step_id
            # forward
            timer.tic()
147
            pred_dets, pred_embs = self.model(data)
G
George Ni 已提交
148

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
            pred_dets, pred_embs = pred_dets.numpy(), pred_embs.numpy()
            online_targets_dict = self.model.tracker.update(pred_dets,
                                                            pred_embs)
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
            for cls_id in range(self.cfg.num_classes):
                online_targets = online_targets_dict[cls_id]
                for t in online_targets:
                    tlwh = t.tlwh
                    tid = t.track_id
                    tscore = t.score
                    if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                    if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > tracker.vertical_ratio:
                        continue
                    online_tlwhs[cls_id].append(tlwh)
                    online_ids[cls_id].append(tid)
                    online_scores[cls_id].append(tscore)
                # save results
                results[cls_id].append(
                    (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
                     online_ids[cls_id]))
G
George Ni 已提交
172

173 174 175 176
            timer.toc()
            save_vis_results(data, frame_id, online_ids, online_tlwhs,
                             online_scores, timer.average_time, show_image,
                             save_dir, self.cfg.num_classes)
G
George Ni 已提交
177 178 179 180 181 182 183 184 185
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def _eval_seq_sde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
                      frame_rate=30,
F
Feng Ni 已提交
186
                      seq_name='',
187
                      scaled=False,
188 189
                      det_file='',
                      draw_threshold=0):
G
George Ni 已提交
190 191 192
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        use_detector = False if not self.model.detector else True
193
        use_reid = False if not self.model.reid else True
G
George Ni 已提交
194

195
        timer = MOTTimer()
F
Feng Ni 已提交
196
        results = defaultdict(list)
G
George Ni 已提交
197 198 199
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
200 201
        if use_reid:
            self.model.reid.eval()
G
George Ni 已提交
202 203 204 205 206
        if not use_detector:
            dets_list = load_det_results(det_file, len(dataloader))
            logger.info('Finish loading detection results file {}.'.format(
                det_file))

207
        tracker = self.model.tracker
F
Feng Ni 已提交
208
        for step_id, data in enumerate(tqdm(dataloader)):
G
George Ni 已提交
209
            self.status['step_id'] = step_id
F
Feng Ni 已提交
210 211 212 213
            ori_image = data['ori_image']  # [bs, H, W, 3]
            ori_image_shape = data['ori_image'].shape[1:3]
            # ori_image_shape: [H, W]

G
George Ni 已提交
214
            input_shape = data['image'].shape[2:]
F
Feng Ni 已提交
215 216 217 218 219 220 221 222 223
            # input_shape: [h, w], before data transforms, set in model config

            im_shape = data['im_shape'][0].numpy()
            # im_shape: [new_h, new_w], after data transforms
            scale_factor = data['scale_factor'][0].numpy()

            empty_detections = False
            # when it has no detected bboxes, will not inference reid model 
            # and if visualize, use original image instead
224 225

            # forward
G
George Ni 已提交
226 227 228
            timer.tic()
            if not use_detector:
                dets = dets_list[frame_id]
F
Feng Ni 已提交
229
                bbox_tlwh = np.array(dets['bbox'], dtype='float32')
G
George Ni 已提交
230
                if bbox_tlwh.shape[0] > 0:
231
                    # detector outputs: pred_cls_ids, pred_scores, pred_bboxes
F
Feng Ni 已提交
232 233 234
                    pred_cls_ids = np.array(dets['cls_id'], dtype='float32')
                    pred_scores = np.array(dets['score'], dtype='float32')
                    pred_bboxes = np.concatenate(
G
George Ni 已提交
235 236 237 238
                        (bbox_tlwh[:, 0:2],
                         bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
                        axis=1)
                else:
239 240 241
                    logger.warning(
                        'Frame {} has not object, try to modify score threshold.'.
                        format(frame_id))
F
Feng Ni 已提交
242
                    empty_detections = True
G
George Ni 已提交
243 244
            else:
                outs = self.model.detector(data)
F
Feng Ni 已提交
245 246 247
                outs['bbox'] = outs['bbox'].numpy()
                outs['bbox_num'] = outs['bbox_num'].numpy()

248
                if len(outs['bbox']) > 0 and empty_detections == False:
249 250 251
                    # detector outputs: pred_cls_ids, pred_scores, pred_bboxes
                    pred_cls_ids = outs['bbox'][:, 0:1]
                    pred_scores = outs['bbox'][:, 1:2]
252
                    if not scaled:
F
Feng Ni 已提交
253 254 255 256
                        # Note: scaled=False only in JDE YOLOv3 or other detectors
                        # with LetterBoxResize and JDEBBoxPostProcess.
                        #
                        # 'scaled' means whether the coords after detector outputs
257 258
                        # have been scaled back to the original image, set True 
                        # in general detector, set False in JDE YOLOv3.
259 260 261 262 263
                        pred_bboxes = scale_coords(outs['bbox'][:, 2:],
                                                   input_shape, im_shape,
                                                   scale_factor)
                    else:
                        pred_bboxes = outs['bbox'][:, 2:]
264 265
                    pred_dets_old = np.concatenate(
                        (pred_cls_ids, pred_scores, pred_bboxes), axis=1)
G
George Ni 已提交
266
                else:
267
                    logger.warning(
F
Feng Ni 已提交
268
                        'Frame {} has not detected object, try to modify score threshold.'.
269
                        format(frame_id))
F
Feng Ni 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
                    empty_detections = True

            if not empty_detections:
                pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape)
                if len(keep_idx[0]) == 0:
                    logger.warning(
                        'Frame {} has not detected object left after clip_box.'.
                        format(frame_id))
                    empty_detections = True

            if empty_detections:
                timer.toc()
                # if visualize, use original image instead
                online_ids, online_tlwhs, online_scores = None, None, None
                save_vis_results(data, frame_id, online_ids, online_tlwhs,
                                 online_scores, timer.average_time, show_image,
                                 save_dir, self.cfg.num_classes)
                frame_id += 1
                # thus will not inference reid model
                continue
G
George Ni 已提交
290

F
Feng Ni 已提交
291
            pred_cls_ids = pred_cls_ids[keep_idx[0]]
292
            pred_scores = pred_scores[keep_idx[0]]
F
Feng Ni 已提交
293
            pred_dets = np.concatenate(
294 295 296 297 298 299 300 301 302 303 304
                (pred_cls_ids, pred_scores, pred_xyxys), axis=1)

            if use_reid:
                crops = get_crops(
                    pred_xyxys,
                    ori_image,
                    w=tracker.input_size[0],
                    h=tracker.input_size[1])
                crops = paddle.to_tensor(crops)

                data.update({'crops': crops})
305
                pred_embs = self.model(data)['embeddings'].numpy()
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
            else:
                pred_embs = None

            if isinstance(tracker, DeepSORTTracker):
                online_tlwhs, online_scores, online_ids = [], [], []
                tracker.predict()
                online_targets = tracker.update(pred_dets, pred_embs)
                for t in online_targets:
                    if not t.is_confirmed() or t.time_since_update > 1:
                        continue
                    tlwh = t.to_tlwh()
                    tscore = t.score
                    tid = t.track_id
                    if tscore < draw_threshold: continue
                    if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                    if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > tracker.vertical_ratio:
                        continue
                    online_tlwhs.append(tlwh)
                    online_scores.append(tscore)
                    online_ids.append(tid)
                timer.toc()

                # save results
                results[0].append(
                    (frame_id + 1, online_tlwhs, online_scores, online_ids))
                save_vis_results(data, frame_id, online_ids, online_tlwhs,
F
Feng Ni 已提交
333 334
                                 online_scores, timer.average_time, show_image,
                                 save_dir, self.cfg.num_classes)
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

            elif isinstance(tracker, JDETracker):
                # trick hyperparams only used for MOTChallenge (MOT17, MOT20) Test-set
                tracker.track_buffer, tracker.conf_thres = get_trick_hyperparams(
                    seq_name, tracker.track_buffer, tracker.conf_thres)

                online_targets_dict = tracker.update(pred_dets_old, pred_embs)
                online_tlwhs = defaultdict(list)
                online_scores = defaultdict(list)
                online_ids = defaultdict(list)
                for cls_id in range(self.cfg.num_classes):
                    online_targets = online_targets_dict[cls_id]
                    for t in online_targets:
                        tlwh = t.tlwh
                        tid = t.track_id
                        tscore = t.score
                        if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                        if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                                3] > tracker.vertical_ratio:
                            continue
                        online_tlwhs[cls_id].append(tlwh)
                        online_ids[cls_id].append(tid)
                        online_scores[cls_id].append(tscore)
                    # save results
                    results[cls_id].append(
F
Feng Ni 已提交
360 361
                        (frame_id + 1, online_tlwhs[cls_id],
                         online_scores[cls_id], online_ids[cls_id]))
362 363
                timer.toc()
                save_vis_results(data, frame_id, online_ids, online_tlwhs,
F
Feng Ni 已提交
364 365
                                 online_scores, timer.average_time, show_image,
                                 save_dir, self.cfg.num_classes)
G
George Ni 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379

            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def mot_evaluate(self,
                     data_root,
                     seqs,
                     output_dir,
                     data_type='mot',
                     model_type='JDE',
                     save_images=False,
                     save_videos=False,
                     show_image=False,
380
                     scaled=False,
G
George Ni 已提交
381 382 383 384
                     det_results_dir=''):
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
385
        assert data_type in MOT_DATA_TYPE, \
386
            "data_type should be 'mot', 'mcmot' or 'kitti'"
387 388
        assert model_type in MOT_ARCH, \
            "model_type should be 'JDE', 'DeepSORT', 'FairMOT' or 'ByteTrack'"
G
George Ni 已提交
389 390 391 392 393

        # run tracking
        n_frame = 0
        timer_avgs, timer_calls = [], []
        for seq in seqs:
394 395 396 397
            infer_dir = os.path.join(data_root, seq)
            if not os.path.exists(infer_dir) or not os.path.isdir(infer_dir):
                logger.warning("Seq {} error, {} has no images.".format(
                    seq, infer_dir))
G
George Ni 已提交
398
                continue
399 400 401 402
            if os.path.exists(os.path.join(infer_dir, 'img1')):
                infer_dir = os.path.join(infer_dir, 'img1')

            frame_rate = 30
G
George Ni 已提交
403
            seqinfo = os.path.join(data_root, seq, 'seqinfo.ini')
404 405 406 407
            if os.path.exists(seqinfo):
                meta_info = open(seqinfo).read()
                frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
                                           meta_info.find('\nseqLength')])
G
George Ni 已提交
408

G
George Ni 已提交
409 410
            save_dir = os.path.join(output_dir, 'mot_outputs',
                                    seq) if save_images or save_videos else None
F
Feng Ni 已提交
411
            logger.info('Evaluate seq: {}'.format(seq))
G
George Ni 已提交
412

413
            self.dataset.set_images(self.get_infer_images(infer_dir))
G
George Ni 已提交
414 415 416
            dataloader = create('EvalMOTReader')(self.dataset, 0)

            result_filename = os.path.join(result_root, '{}.txt'.format(seq))
417

G
George Ni 已提交
418
            with paddle.no_grad():
419
                if model_type in MOT_ARCH_JDE:
G
George Ni 已提交
420 421 422 423 424
                    results, nf, ta, tc = self._eval_seq_jde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate)
425
                elif model_type in MOT_ARCH_SDE:
G
George Ni 已提交
426 427 428 429 430
                    results, nf, ta, tc = self._eval_seq_sde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate,
F
Feng Ni 已提交
431
                        seq_name=seq,
432
                        scaled=scaled,
G
George Ni 已提交
433 434 435 436
                        det_file=os.path.join(det_results_dir,
                                              '{}.txt'.format(seq)))
                else:
                    raise ValueError(model_type)
G
George Ni 已提交
437

438 439
            write_mot_results(result_filename, results, data_type,
                              self.cfg.num_classes)
G
George Ni 已提交
440 441 442 443 444
            n_frame += nf
            timer_avgs.append(ta)
            timer_calls.append(tc)

            if save_videos:
G
George Ni 已提交
445 446
                output_video_path = os.path.join(save_dir, '..',
                                                 '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
447
                cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                    save_dir, output_video_path)
                os.system(cmd_str)
                logger.info('Save video in {}.'.format(output_video_path))

            # update metrics
            for metric in self._metrics:
                metric.update(data_root, seq, data_type, result_root,
                              result_filename)

        timer_avgs = np.asarray(timer_avgs)
        timer_calls = np.asarray(timer_calls)
        all_time = np.dot(timer_avgs, timer_calls)
        avg_time = all_time / np.sum(timer_calls)
        logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
            all_time, 1.0 / avg_time))

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def get_infer_images(self, infer_dir):
        assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
        images = set()
        assert os.path.isdir(infer_dir), \
            "infer_dir {} is not a directory".format(infer_dir)
        exts = ['jpg', 'jpeg', 'png', 'bmp']
        exts += [ext.upper() for ext in exts]
        for ext in exts:
            images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
        images = list(images)
        images.sort()
        assert len(images) > 0, "no image found in {}".format(infer_dir)
        logger.info("Found {} inference images in total.".format(len(images)))
        return images

F
Feng Ni 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499
    def mot_predict_seq(self,
                        video_file,
                        frame_rate,
                        image_dir,
                        output_dir,
                        data_type='mot',
                        model_type='JDE',
                        save_images=False,
                        save_videos=True,
                        show_image=False,
                        scaled=False,
                        det_results_dir='',
                        draw_threshold=0.5):
G
George Ni 已提交
500 501 502 503 504 505 506
        assert video_file is not None or image_dir is not None, \
            "--video_file or --image_dir should be set."
        assert video_file is None or os.path.isfile(video_file), \
                "{} is not a file".format(video_file)
        assert image_dir is None or os.path.isdir(image_dir), \
                "{} is not a directory".format(image_dir)

G
George Ni 已提交
507 508 509
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
510
        assert data_type in MOT_DATA_TYPE, \
511
            "data_type should be 'mot', 'mcmot' or 'kitti'"
512 513
        assert model_type in MOT_ARCH, \
            "model_type should be 'JDE', 'DeepSORT', 'FairMOT' or 'ByteTrack'"
G
George Ni 已提交
514

G
George Ni 已提交
515 516 517
        # run tracking        
        if video_file:
            seq = video_file.split('/')[-1].split('.')[0]
518
            self.dataset.set_video(video_file, frame_rate)
G
George Ni 已提交
519 520 521
            logger.info('Starting tracking video {}'.format(video_file))
        elif image_dir:
            seq = image_dir.split('/')[-1].split('.')[0]
F
Feng Ni 已提交
522 523
            if os.path.exists(os.path.join(image_dir, 'img1')):
                image_dir = os.path.join(image_dir, 'img1')
G
George Ni 已提交
524 525 526 527 528 529 530 531 532 533
            images = [
                '{}/{}'.format(image_dir, x) for x in os.listdir(image_dir)
            ]
            images.sort()
            self.dataset.set_images(images)
            logger.info('Starting tracking folder {}, found {} images'.format(
                image_dir, len(images)))
        else:
            raise ValueError('--video_file or --image_dir should be set.')

G
George Ni 已提交
534 535 536 537 538
        save_dir = os.path.join(output_dir, 'mot_outputs',
                                seq) if save_images or save_videos else None

        dataloader = create('TestMOTReader')(self.dataset, 0)
        result_filename = os.path.join(result_root, '{}.txt'.format(seq))
539 540
        if frame_rate == -1:
            frame_rate = self.dataset.frame_rate
G
George Ni 已提交
541

G
George Ni 已提交
542
        with paddle.no_grad():
543
            if model_type in MOT_ARCH_JDE:
G
George Ni 已提交
544 545 546 547
                results, nf, ta, tc = self._eval_seq_jde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
548 549
                    frame_rate=frame_rate,
                    draw_threshold=draw_threshold)
550
            elif model_type in MOT_ARCH_SDE:
G
George Ni 已提交
551 552 553 554 555
                results, nf, ta, tc = self._eval_seq_sde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
                    frame_rate=frame_rate,
F
Feng Ni 已提交
556
                    seq_name=seq,
557
                    scaled=scaled,
G
George Ni 已提交
558
                    det_file=os.path.join(det_results_dir,
559 560
                                          '{}.txt'.format(seq)),
                    draw_threshold=draw_threshold)
G
George Ni 已提交
561 562
            else:
                raise ValueError(model_type)
G
George Ni 已提交
563 564

        if save_videos:
G
George Ni 已提交
565 566
            output_video_path = os.path.join(save_dir, '..',
                                             '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
567
            cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
568 569 570
                save_dir, output_video_path)
            os.system(cmd_str)
            logger.info('Save video in {}'.format(output_video_path))
F
Feng Ni 已提交
571 572 573

        write_mot_results(result_filename, results, data_type,
                          self.cfg.num_classes)
574

F
Feng Ni 已提交
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
def get_trick_hyperparams(video_name, ori_buffer, ori_thresh):
    if video_name[:3] != 'MOT':
        # only used for MOTChallenge (MOT17, MOT20) Test-set
        return ori_buffer, ori_thresh

    video_name = video_name[:8]
    if 'MOT17-05' in video_name:
        track_buffer = 14
    elif 'MOT17-13' in video_name:
        track_buffer = 25
    else:
        track_buffer = ori_buffer

    if 'MOT17-01' in video_name:
        track_thresh = 0.65
    elif 'MOT17-06' in video_name:
        track_thresh = 0.65
    elif 'MOT17-12' in video_name:
        track_thresh = 0.7
    elif 'MOT17-14' in video_name:
        track_thresh = 0.67
    else:
        track_thresh = ori_thresh

    if 'MOT20-06' in video_name or 'MOT20-08' in video_name:
        track_thresh = 0.3
    else:
        track_thresh = ori_thresh
F
Feng Ni 已提交
604

605
    return track_buffer, ori_thresh