cpu_vec.h 12.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
tensor-tang 已提交
16
#include <cmath>
T
tensor-tang 已提交
17
#include <functional>
18
#include <string>
T
tensor-tang 已提交
19
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
20 21 22 23 24 25 26
#ifdef __AVX__
#include <immintrin.h>
#endif

#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
T
tensor-tang 已提交
27 28 29 30 31 32 33 34

namespace paddle {
namespace operators {
namespace math {

#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0

T
tensor-tang 已提交
35 36 37 38 39 40 41
#define AVX_FLOAT_BLOCK 8
#define AVX_DOUBLE_BLOCK 4
#define AVX2_FLOAT_BLOCK 8
#define AVX2_DOUBLE_BLOCK 4
#define AVX512_FLOAT_BLOCK 16
#define AVX512_DOUBLE_BLOCK 8

T
tensor-tang 已提交
42
template <typename T>
T
tensor-tang 已提交
43 44 45 46
inline void vec_exp(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
T
tensor-tang 已提交
47 48
}

49 50 51 52 53 54 55
template <typename T>
inline void vec_scal(const int n, const T a, T* x) {
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
}

T
tensor-tang 已提交
56 57 58 59
#ifdef PADDLE_WITH_MKLML
template <>
inline void vec_exp<float>(const int n, const float* x, float* y) {
  platform::dynload::vsExp(n, x, y);
T
tensor-tang 已提交
60 61
}

T
tensor-tang 已提交
62 63 64 65
template <>
inline void vec_exp<double>(const int n, const double* x, double* y) {
  platform::dynload::vdExp(n, x, y);
}
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

template <>
inline void vec_scal<float>(const int n, const float a, float* x) {
  platform::dynload::cblas_sscal(n, a, x, 1);
}

template <>
inline void vec_scal<double>(const int n, const double a, double* x) {
  platform::dynload::cblas_dscal(n, a, x, 1);
}
#endif

// MKL scal only support inplace, choose this if src and dst are not equal
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_scal(const int n, const T a, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = a * x[i];
  }
}

template <>
inline void vec_scal<float, platform::jit::avx>(const int n, const float a,
                                                const float* x, float* y) {
#ifdef __AVX__
  constexpr int block = AVX_FLOAT_BLOCK;
T
tensor-tang 已提交
91
  if (n < block) {
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    vec_scal<float, platform::jit::isa_any>(n, a, x, y);
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 scalar = _mm256_set1_ps(a);
  __m256 tmp;
#define MOVE_ONE_STEP               \
  tmp = _mm256_loadu_ps(x + i);     \
  tmp = _mm256_mul_ps(tmp, scalar); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step if src and dst are inplace
  for (i = n - rest; i < n; ++i) {
    y[i] = a * x[i];
  }
#else
  vec_scal<float, platform::jit::isa_any>(n, a, x, y);
T
tensor-tang 已提交
117
#endif
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
}

template <>
inline void vec_scal<float, platform::jit::avx2>(const int n, const float a,
                                                 const float* x, float* y) {
  vec_scal<float, platform::jit::avx>(n, a, x, y);
}

template <>
inline void vec_scal<float, platform::jit::avx512_common>(const int n,
                                                          const float a,
                                                          const float* x,
                                                          float* y) {
  // TODO(TJ): enable me
  vec_scal<float, platform::jit::avx2>(n, a, x, y);
}
T
tensor-tang 已提交
134

T
tensor-tang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_bias_sub(const int n, const T a, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = a - x[i];
  }
}

template <>
inline void vec_bias_sub<float, platform::jit::avx>(const int n, const float a,
                                                    const float* x, float* y) {
#ifdef __AVX__
  constexpr int block = AVX_FLOAT_BLOCK;
  if (n < block) {
    vec_bias_sub<float, platform::jit::isa_any>(n, a, x, y);
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 bias = _mm256_set1_ps(a);
  __m256 tmp;
#define MOVE_ONE_STEP             \
  tmp = _mm256_loadu_ps(x + i);   \
  tmp = _mm256_sub_ps(bias, tmp); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step if src and dst are inplace
  for (i = n - rest; i < n; ++i) {
    y[i] = a - x[i];
  }
#else
  vec_bias_sub<float, platform::jit::isa_any>(n, a, x, y);
#endif
}

template <>
inline void vec_bias_sub<float, platform::jit::avx2>(const int n, const float a,
                                                     const float* x, float* y) {
  vec_bias_sub<float, platform::jit::avx>(n, a, x, y);
}

template <>
inline void vec_bias_sub<float, platform::jit::avx512_common>(const int n,
                                                              const float a,
                                                              const float* x,
                                                              float* y) {
  // TODO(TJ): enable me
  vec_bias_sub<float, platform::jit::avx2>(n, a, x, y);
}

T
tensor-tang 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_add_bias(const int n, const T a, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] + a;
  }
}

template <>
inline void vec_add_bias<float, platform::jit::avx>(const int n, const float a,
                                                    const float* x, float* y) {
#ifdef __AVX__
  constexpr int block = AVX_FLOAT_BLOCK;
  if (n < block) {
    vec_add_bias<float, platform::jit::isa_any>(n, a, x, y);
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 bias = _mm256_set1_ps(a);
  __m256 tmp;
#define MOVE_ONE_STEP             \
  tmp = _mm256_loadu_ps(x + i);   \
  tmp = _mm256_add_ps(tmp, bias); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step if src and dst are inplace
  for (i = n - rest; i < n; ++i) {
    y[i] = x[i] + a;
  }
#else
  vec_add_bias<float, platform::jit::isa_any>(n, a, x, y);
#endif
}

template <>
inline void vec_add_bias<float, platform::jit::avx2>(const int n, const float a,
                                                     const float* x, float* y) {
  vec_add_bias<float, platform::jit::avx>(n, a, x, y);
}

template <>
inline void vec_add_bias<float, platform::jit::avx512_common>(const int n,
                                                              const float a,
                                                              const float* x,
                                                              float* y) {
  // TODO(TJ): enable me
  vec_add_bias<float, platform::jit::avx2>(n, a, x, y);
}

247 248 249 250 251 252
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_identity(const int n, const T* x, T* y) {
  // do nothing
  return;
}

T
tensor-tang 已提交
253 254 255 256 257
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_sigmoid(const int n, const T* x, T* y) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
258 259 260 261 262 263
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(0) - y[i];
  }
  vec_exp<T>(n, y, y);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
T
tensor-tang 已提交
264 265 266
  }
}

267 268 269 270 271
template <>
inline void vec_sigmoid<float, platform::jit::avx>(const int n, const float* x,
                                                   float* y) {
#ifdef __AVX__
  constexpr int block = AVX_FLOAT_BLOCK;
272
  if (n < block) {
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    vec_sigmoid<float, platform::jit::isa_any>(n, x, y);
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);
  __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);
  __m256 zeros = _mm256_setzero_ps();
  __m256 tmp;
#define MOVE_ONE_STEP              \
  tmp = _mm256_loadu_ps(x + i);    \
  tmp = _mm256_max_ps(tmp, min);   \
  tmp = _mm256_min_ps(tmp, max);   \
  tmp = _mm256_sub_ps(zeros, tmp); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
292
#undef MOVE_ONE_STEP
293
  if (rest != 0) {
294 295 296 297 298 299
    // can not continue move step since the src and dst address could be equal
    const float xmin = SIGMOID_THRESHOLD_MIN;
    const float xmax = SIGMOID_THRESHOLD_MAX;
    for (i = n - rest; i < n; ++i) {
      y[i] = 0.f - ((x[i] < xmin) ? xmin : ((x[i] > xmax) ? xmax : x[i]));
    }
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  }

  vec_exp<float>(n, y, y);

  __m256 ones = _mm256_set1_ps(1.0f);
#define MOVE_ONE_STEP             \
  tmp = _mm256_loadu_ps(y + i);   \
  tmp = _mm256_add_ps(ones, tmp); \
  tmp = _mm256_div_ps(ones, tmp); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step
  for (i = n - rest; i < n; ++i) {
    y[i] = 1.f / (1.f + y[i]);
  }
#else
  vec_sigmoid<float, platform::jit::isa_any>(n, x, y);
#endif
}

template <>
inline void vec_sigmoid<float, platform::jit::avx2>(const int n, const float* x,
                                                    float* y) {
  vec_sigmoid<float, platform::jit::avx>(n, x, y);
}

template <>
inline void vec_sigmoid<float, platform::jit::avx512_common>(const int n,
                                                             const float* x,
                                                             float* y) {
336 337
  // TODO(TJ): enable me
  vec_sigmoid<float, platform::jit::avx2>(n, x, y);
338 339
}

T
tensor-tang 已提交
340 341
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_tanh(const int n, const T* x, T* y) {
342 343 344
  vec_scal<T, isa>(n, static_cast<T>(2), x, y);
  vec_sigmoid<T, isa>(n, y, y);
  vec_scal<T>(n, static_cast<T>(2), y);
T
tensor-tang 已提交
345
  vec_add_bias<T, isa>(n, static_cast<T>(-1), y, y);
T
tensor-tang 已提交
346 347
}

T
tensor-tang 已提交
348
// TODO(TJ): make relu clip
T
tensor-tang 已提交
349 350 351 352 353 354 355
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_relu(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0 ? x[i] : 0;
  }
}

T
tensor-tang 已提交
356 357 358 359 360
template <>
inline void vec_relu<float, platform::jit::avx>(const int n, const float* x,
                                                float* y) {
#ifdef __AVX__
  constexpr int block = AVX_FLOAT_BLOCK;
T
tensor-tang 已提交
361
  if (n < block * 4) {
T
tensor-tang 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
    vec_relu<float, platform::jit::isa_any>(n, x, y);
    return;
  }

  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 zeros = _mm256_setzero_ps();
  __m256 tmp;
#define MOVE_ONE_STEP              \
  tmp = _mm256_loadu_ps(x + i);    \
  tmp = _mm256_max_ps(tmp, zeros); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
  if (rest == 0) {
    return;
  }
  i = n - block;
  MOVE_ONE_STEP;
#undef MOVE_ONE_STEP

#else
  vec_relu<float, platform::jit::isa_any>(n, x, y);
#endif
}

T
tensor-tang 已提交
390 391 392
template <>
inline void vec_relu<float, platform::jit::avx2>(const int n, const float* x,
                                                 float* y) {
T
tensor-tang 已提交
393
  vec_relu<float, platform::jit::avx>(n, x, y);
T
tensor-tang 已提交
394 395 396
}

template <>
T
tensor-tang 已提交
397 398 399
inline void vec_relu<float, platform::jit::avx512_common>(const int n,
                                                          const float* x,
                                                          float* y) {
400
  // TODO(TJ): enable me
T
tensor-tang 已提交
401
  vec_relu<float, platform::jit::avx2>(n, x, y);
T
tensor-tang 已提交
402 403
}

T
tensor-tang 已提交
404 405
// TODO(TJ): optimize double of sigmoid, tanh and relu if necessary

406 407 408 409 410 411 412 413 414 415 416 417 418 419
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
class VecActivations {
 public:
  std::function<void(const int, const T*, T*)> operator()(
      const std::string& type) {
    if (type == "sigmoid") {
      return vec_sigmoid<T, isa>;
    } else if (type == "relu") {
      return vec_relu<T, isa>;
    } else if (type == "tanh") {
      return vec_tanh<T, isa>;
    } else if (type == "identity" || type == "") {
      return vec_identity<T, isa>;
    }
T
tensor-tang 已提交
420
    LOG(FATAL) << "Not support type: " << type;
421 422 423
  }
};

T
tensor-tang 已提交
424 425 426
}  // namespace math
}  // namespace operators
}  // namespace paddle