cpu_vec.h 8.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
tensor-tang 已提交
16
#include <cmath>
17
#include <string>
T
tensor-tang 已提交
18
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
19 20 21 22 23 24 25
#ifdef __AVX__
#include <immintrin.h>
#endif

#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
T
tensor-tang 已提交
26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {
namespace math {

#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0

T
tensor-tang 已提交
34 35 36 37 38 39 40
#define AVX_FLOAT_BLOCK 8
#define AVX_DOUBLE_BLOCK 4
#define AVX2_FLOAT_BLOCK 8
#define AVX2_DOUBLE_BLOCK 4
#define AVX512_FLOAT_BLOCK 16
#define AVX512_DOUBLE_BLOCK 8

T
tensor-tang 已提交
41
template <typename T>
T
tensor-tang 已提交
42 43 44 45
inline void vec_exp(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
T
tensor-tang 已提交
46 47
}

48 49 50 51 52 53 54
template <typename T>
inline void vec_scal(const int n, const T a, T* x) {
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
}

T
tensor-tang 已提交
55 56 57 58
#ifdef PADDLE_WITH_MKLML
template <>
inline void vec_exp<float>(const int n, const float* x, float* y) {
  platform::dynload::vsExp(n, x, y);
T
tensor-tang 已提交
59 60
}

T
tensor-tang 已提交
61 62 63 64
template <>
inline void vec_exp<double>(const int n, const double* x, double* y) {
  platform::dynload::vdExp(n, x, y);
}
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

template <>
inline void vec_scal<float>(const int n, const float a, float* x) {
  platform::dynload::cblas_sscal(n, a, x, 1);
}

template <>
inline void vec_scal<double>(const int n, const double a, double* x) {
  platform::dynload::cblas_dscal(n, a, x, 1);
}
#endif

// MKL scal only support inplace, choose this if src and dst are not equal
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_scal(const int n, const T a, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = a * x[i];
  }
}

template <>
inline void vec_scal<float, platform::jit::avx>(const int n, const float a,
                                                const float* x, float* y) {
#ifdef __AVX__
  constexpr int block = AVX_FLOAT_BLOCK;
  if (n < block * 4) {  // use larger threshold, since small ones has no boost
    vec_scal<float, platform::jit::isa_any>(n, a, x, y);
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 scalar = _mm256_set1_ps(a);
  __m256 tmp;
#define MOVE_ONE_STEP               \
  tmp = _mm256_loadu_ps(x + i);     \
  tmp = _mm256_mul_ps(tmp, scalar); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step if src and dst are inplace
  for (i = n - rest; i < n; ++i) {
    y[i] = a * x[i];
  }
#else
  vec_scal<float, platform::jit::isa_any>(n, a, x, y);
T
tensor-tang 已提交
116
#endif
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
}

template <>
inline void vec_scal<float, platform::jit::avx2>(const int n, const float a,
                                                 const float* x, float* y) {
  vec_scal<float, platform::jit::avx>(n, a, x, y);
}

template <>
inline void vec_scal<float, platform::jit::avx512_common>(const int n,
                                                          const float a,
                                                          const float* x,
                                                          float* y) {
  // TODO(TJ): enable me
  vec_scal<float, platform::jit::avx2>(n, a, x, y);
}
T
tensor-tang 已提交
133

134 135 136 137 138 139
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_identity(const int n, const T* x, T* y) {
  // do nothing
  return;
}

T
tensor-tang 已提交
140 141 142 143 144
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_sigmoid(const int n, const T* x, T* y) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
145 146 147 148 149 150
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(0) - y[i];
  }
  vec_exp<T>(n, y, y);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
T
tensor-tang 已提交
151 152 153
  }
}

154 155 156 157 158
template <>
inline void vec_sigmoid<float, platform::jit::avx>(const int n, const float* x,
                                                   float* y) {
#ifdef __AVX__
  constexpr int block = AVX_FLOAT_BLOCK;
159
  if (n < block) {
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    vec_sigmoid<float, platform::jit::isa_any>(n, x, y);
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);
  __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);
  __m256 zeros = _mm256_setzero_ps();
  __m256 tmp;
#define MOVE_ONE_STEP              \
  tmp = _mm256_loadu_ps(x + i);    \
  tmp = _mm256_max_ps(tmp, min);   \
  tmp = _mm256_min_ps(tmp, max);   \
  tmp = _mm256_sub_ps(zeros, tmp); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
179
#undef MOVE_ONE_STEP
180
  if (rest != 0) {
181 182 183 184 185 186
    // can not continue move step since the src and dst address could be equal
    const float xmin = SIGMOID_THRESHOLD_MIN;
    const float xmax = SIGMOID_THRESHOLD_MAX;
    for (i = n - rest; i < n; ++i) {
      y[i] = 0.f - ((x[i] < xmin) ? xmin : ((x[i] > xmax) ? xmax : x[i]));
    }
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
  }

  vec_exp<float>(n, y, y);

  __m256 ones = _mm256_set1_ps(1.0f);
#define MOVE_ONE_STEP             \
  tmp = _mm256_loadu_ps(y + i);   \
  tmp = _mm256_add_ps(ones, tmp); \
  tmp = _mm256_div_ps(ones, tmp); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step
  for (i = n - rest; i < n; ++i) {
    y[i] = 1.f / (1.f + y[i]);
  }
#else
  vec_sigmoid<float, platform::jit::isa_any>(n, x, y);
#endif
}

template <>
inline void vec_sigmoid<float, platform::jit::avx2>(const int n, const float* x,
                                                    float* y) {
  vec_sigmoid<float, platform::jit::avx>(n, x, y);
}

template <>
inline void vec_sigmoid<float, platform::jit::avx512_common>(const int n,
                                                             const float* x,
                                                             float* y) {
223 224
  // TODO(TJ): enable me
  vec_sigmoid<float, platform::jit::avx2>(n, x, y);
225 226
}

T
tensor-tang 已提交
227 228
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_tanh(const int n, const T* x, T* y) {
229 230 231
  vec_scal<T, isa>(n, static_cast<T>(2), x, y);
  vec_sigmoid<T, isa>(n, y, y);
  vec_scal<T>(n, static_cast<T>(2), y);
T
tensor-tang 已提交
232
  for (int i = 0; i < n; ++i) {
233
    y[i] = y[i] - static_cast<T>(1);
T
tensor-tang 已提交
234 235 236 237 238 239 240 241 242 243
  }
}

template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_relu(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0 ? x[i] : 0;
  }
}

T
tensor-tang 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
template <>
inline void vec_relu<float, platform::jit::avx>(const int n, const float* x,
                                                float* y) {
#ifdef __AVX__
  constexpr int block = AVX_FLOAT_BLOCK;
  if (n < block) {
    vec_relu<float, platform::jit::isa_any>(n, x, y);
    return;
  }

  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 zeros = _mm256_setzero_ps();
  __m256 tmp;
#define MOVE_ONE_STEP              \
  tmp = _mm256_loadu_ps(x + i);    \
  tmp = _mm256_max_ps(tmp, zeros); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
  if (rest == 0) {
    return;
  }
  i = n - block;
  MOVE_ONE_STEP;
#undef MOVE_ONE_STEP

#else
  vec_relu<float, platform::jit::isa_any>(n, x, y);
#endif
}

T
tensor-tang 已提交
278 279 280
template <>
inline void vec_relu<float, platform::jit::avx2>(const int n, const float* x,
                                                 float* y) {
T
tensor-tang 已提交
281
  vec_relu<float, platform::jit::avx>(n, x, y);
T
tensor-tang 已提交
282 283 284
}

template <>
T
tensor-tang 已提交
285 286 287
inline void vec_relu<float, platform::jit::avx512_common>(const int n,
                                                          const float* x,
                                                          float* y) {
288
  // TODO(TJ): enable me
T
tensor-tang 已提交
289
  vec_relu<float, platform::jit::avx2>(n, x, y);
T
tensor-tang 已提交
290
}
291
// TODO(TJ): add vec add bias, make relu clip
T
tensor-tang 已提交
292

T
tensor-tang 已提交
293 294
// TODO(TJ): optimize double of sigmoid, tanh and relu if necessary

295 296 297 298 299 300 301 302 303 304 305 306 307 308
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
class VecActivations {
 public:
  std::function<void(const int, const T*, T*)> operator()(
      const std::string& type) {
    if (type == "sigmoid") {
      return vec_sigmoid<T, isa>;
    } else if (type == "relu") {
      return vec_relu<T, isa>;
    } else if (type == "tanh") {
      return vec_tanh<T, isa>;
    } else if (type == "identity" || type == "") {
      return vec_identity<T, isa>;
    }
T
tensor-tang 已提交
309
    LOG(FATAL) << "Not support type: " << type;
310 311 312
  }
};

T
tensor-tang 已提交
313 314 315
}  // namespace math
}  // namespace operators
}  // namespace paddle