cpu_vec.h 8.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
tensor-tang 已提交
16
#include <cmath>
17
#include <string>
T
tensor-tang 已提交
18
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
19 20 21 22 23 24 25
#ifdef __AVX__
#include <immintrin.h>
#endif

#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
T
tensor-tang 已提交
26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {
namespace math {

#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0

T
tensor-tang 已提交
34 35 36 37 38 39 40
#define AVX_FLOAT_BLOCK 8
#define AVX_DOUBLE_BLOCK 4
#define AVX2_FLOAT_BLOCK 8
#define AVX2_DOUBLE_BLOCK 4
#define AVX512_FLOAT_BLOCK 16
#define AVX512_DOUBLE_BLOCK 8

T
tensor-tang 已提交
41
template <typename T>
T
tensor-tang 已提交
42 43 44 45
inline void vec_exp(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
T
tensor-tang 已提交
46 47
}

T
tensor-tang 已提交
48 49 50 51
#ifdef PADDLE_WITH_MKLML
template <>
inline void vec_exp<float>(const int n, const float* x, float* y) {
  platform::dynload::vsExp(n, x, y);
T
tensor-tang 已提交
52 53
}

T
tensor-tang 已提交
54 55 56 57 58 59
template <>
inline void vec_exp<double>(const int n, const double* x, double* y) {
  platform::dynload::vdExp(n, x, y);
}
#endif

60 61 62 63 64 65
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_identity(const int n, const T* x, T* y) {
  // do nothing
  return;
}

T
tensor-tang 已提交
66 67 68 69 70
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_sigmoid(const int n, const T* x, T* y) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
71 72 73 74 75 76
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(0) - y[i];
  }
  vec_exp<T>(n, y, y);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
T
tensor-tang 已提交
77 78 79
  }
}

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
template <>
inline void vec_sigmoid<float, platform::jit::avx>(const int n, const float* x,
                                                   float* y) {
#ifdef __AVX__
  constexpr int block = AVX_FLOAT_BLOCK;
  if (n < block) {  // can use larger threshold if necessary
    vec_sigmoid<float, platform::jit::isa_any>(n, x, y);
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);
  __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);
  __m256 zeros = _mm256_setzero_ps();
  __m256 tmp;
#define MOVE_ONE_STEP              \
  tmp = _mm256_loadu_ps(x + i);    \
  tmp = _mm256_max_ps(tmp, min);   \
  tmp = _mm256_min_ps(tmp, max);   \
  tmp = _mm256_sub_ps(zeros, tmp); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
  if (rest != 0) {
    i = n - block;
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP

  vec_exp<float>(n, y, y);

  __m256 ones = _mm256_set1_ps(1.0f);
#define MOVE_ONE_STEP             \
  tmp = _mm256_loadu_ps(y + i);   \
  tmp = _mm256_add_ps(ones, tmp); \
  tmp = _mm256_div_ps(ones, tmp); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  // can not continue move step
  for (i = n - rest; i < n; ++i) {
    y[i] = 1.f / (1.f + y[i]);
  }
#else
  vec_sigmoid<float, platform::jit::isa_any>(n, x, y);
#endif
}

template <>
inline void vec_sigmoid<float, platform::jit::avx2>(const int n, const float* x,
                                                    float* y) {
  vec_sigmoid<float, platform::jit::avx>(n, x, y);
}

template <>
inline void vec_sigmoid<float, platform::jit::avx512_common>(const int n,
                                                             const float* x,
                                                             float* y) {
#ifdef __AVX512F__
  constexpr int block = AVX512_FLOAT_BLOCK;
  if (n < block) {
    vec_sigmoid<float, platform::jit::isa_any>(n, x, y);
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m512 max = _mm512_set1_ps(SIGMOID_THRESHOLD_MAX);
  __m512 min = _mm512_set1_ps(SIGMOID_THRESHOLD_MIN);
  __m512 zeros = _mm512_setzero_ps();
  __m512 tmp;
#define MOVE_ONE_STEP              \
  tmp = _mm512_loadu_ps(x + i);    \
  tmp = _mm512_max_ps(tmp, min);   \
  tmp = _mm512_min_ps(tmp, max);   \
  tmp = _mm512_sub_ps(zeros, tmp); \
  _mm512_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
  if (rest != 0) {
    i = n - block;
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP

  vec_exp<float>(n, y, y);

  __m512 ones = _mm512_set1_ps(1.0f);
#define MOVE_ONE_STEP             \
  tmp = _mm512_loadu_ps(y + i);   \
  tmp = _mm512_add_ps(ones, tmp); \
  tmp = _mm512_div_ps(ones, tmp); \
  _mm512_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
#undef MOVE_ONE_STEP
  if (rest == 0) {
    return;
  }
  for (i = n - rest; i < n; ++i) {
    y[i] = 1.f / (1.f + y[i]);
  }
#else
  vec_sigmoid<float, platform::jit::isa_any>(n, x, y);
#endif
}

T
tensor-tang 已提交
196 197 198
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_tanh(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
199 200
    y[i] = static_cast<T>(2) * x[i];
  }
T
tensor-tang 已提交
201
  vec_sigmoid<T>(n, y, y);
T
tensor-tang 已提交
202 203
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
T
tensor-tang 已提交
204 205 206 207 208 209 210 211 212 213
  }
}

template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_relu(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0 ? x[i] : 0;
  }
}

T
tensor-tang 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
template <>
inline void vec_relu<float, platform::jit::avx>(const int n, const float* x,
                                                float* y) {
#ifdef __AVX__
  constexpr int block = AVX_FLOAT_BLOCK;
  if (n < block) {
    vec_relu<float, platform::jit::isa_any>(n, x, y);
    return;
  }

  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m256 zeros = _mm256_setzero_ps();
  __m256 tmp;
#define MOVE_ONE_STEP              \
  tmp = _mm256_loadu_ps(x + i);    \
  tmp = _mm256_max_ps(tmp, zeros); \
  _mm256_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
  }
  if (rest == 0) {
    return;
  }
  i = n - block;
  MOVE_ONE_STEP;
#undef MOVE_ONE_STEP

#else
  vec_relu<float, platform::jit::isa_any>(n, x, y);
#endif
}

T
tensor-tang 已提交
248 249 250
template <>
inline void vec_relu<float, platform::jit::avx2>(const int n, const float* x,
                                                 float* y) {
T
tensor-tang 已提交
251
  vec_relu<float, platform::jit::avx>(n, x, y);
T
tensor-tang 已提交
252 253 254
}

template <>
T
tensor-tang 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
inline void vec_relu<float, platform::jit::avx512_common>(const int n,
                                                          const float* x,
                                                          float* y) {
#ifdef __AVX512F__
  // test me
  constexpr int block = AVX512_FLOAT_BLOCK;
  if (n < block) {
    vec_relu<float, platform::jit::avx2>(n, x, y);
    return;
  }
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;
  __m512 zeros = _mm512_setzero_ps();
  __m512 tmp;
#define MOVE_ONE_STEP              \
  tmp = _mm512_loadu_ps(x + i);    \
  tmp = _mm512_max_ps(tmp, zeros); \
  _mm512_storeu_ps(y + i, tmp)
  for (i = 0; i < end; i += block) {
    MOVE_ONE_STEP;
T
tensor-tang 已提交
276
  }
T
tensor-tang 已提交
277 278 279 280 281 282 283 284 285
  if (rest == 0) {
    return;
  }
  i = n - block;
  MOVE_ONE_STEP;
#undef MOVE_ONE_STEP
#else
  vec_relu<float, platform::jit::avx2>(n, x, y);
#endif
T
tensor-tang 已提交
286 287
}

T
tensor-tang 已提交
288 289
// TODO(TJ): optimize double of sigmoid, tanh and relu if necessary

290 291 292 293 294 295 296 297 298 299 300 301 302 303
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
class VecActivations {
 public:
  std::function<void(const int, const T*, T*)> operator()(
      const std::string& type) {
    if (type == "sigmoid") {
      return vec_sigmoid<T, isa>;
    } else if (type == "relu") {
      return vec_relu<T, isa>;
    } else if (type == "tanh") {
      return vec_tanh<T, isa>;
    } else if (type == "identity" || type == "") {
      return vec_identity<T, isa>;
    }
T
tensor-tang 已提交
304
    LOG(FATAL) << "Not support type: " << type;
305 306 307
  }
};

T
tensor-tang 已提交
308 309 310
}  // namespace math
}  // namespace operators
}  // namespace paddle