cpu_vec.h 3.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
tensor-tang 已提交
16
#include <cmath>
17
#include <string>
T
tensor-tang 已提交
18
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
19 20 21 22 23 24 25
#ifdef __AVX__
#include <immintrin.h>
#endif

#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
T
tensor-tang 已提交
26 27 28 29 30 31 32 33 34

namespace paddle {
namespace operators {
namespace math {

#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0

template <typename T>
T
tensor-tang 已提交
35 36 37 38
inline void vec_exp(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
T
tensor-tang 已提交
39 40
}

T
tensor-tang 已提交
41 42 43 44
#ifdef PADDLE_WITH_MKLML
template <>
inline void vec_exp<float>(const int n, const float* x, float* y) {
  platform::dynload::vsExp(n, x, y);
T
tensor-tang 已提交
45 46
}

T
tensor-tang 已提交
47 48 49 50 51 52
template <>
inline void vec_exp<double>(const int n, const double* x, double* y) {
  platform::dynload::vdExp(n, x, y);
}
#endif

53 54 55 56 57 58
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_identity(const int n, const T* x, T* y) {
  // do nothing
  return;
}

T
tensor-tang 已提交
59 60 61 62 63
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_sigmoid(const int n, const T* x, T* y) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
64 65 66 67 68 69
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(0) - y[i];
  }
  vec_exp<T>(n, y, y);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
T
tensor-tang 已提交
70 71 72 73 74 75
  }
}

template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_tanh(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
76 77 78 79 80
    y[i] = static_cast<T>(2) * x[i];
  }
  vec_exp<T>(n, y, y);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
T
tensor-tang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  }
}

template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_relu(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0 ? x[i] : 0;
  }
}

template <>
inline void vec_relu<float, platform::jit::avx2>(const int n, const float* x,
                                                 float* y) {
  // TODO(TJ): complete me
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0 ? x[i] : 0;
  }
}

template <>
inline void vec_relu<float, platform::jit::avx>(const int n, const float* x,
                                                float* y) {
  // TODO(TJ): complete me
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0 ? x[i] : 0;
  }
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
class VecActivations {
 public:
  std::function<void(const int, const T*, T*)> operator()(
      const std::string& type) {
    if (type == "sigmoid") {
      return vec_sigmoid<T, isa>;
    } else if (type == "relu") {
      return vec_relu<T, isa>;
    } else if (type == "tanh") {
      return vec_tanh<T, isa>;
    } else if (type == "identity" || type == "") {
      return vec_identity<T, isa>;
    }
T
tensor-tang 已提交
123
    LOG(FATAL) << "Not support type: " << type;
124 125 126
  }
};

T
tensor-tang 已提交
127 128 129
}  // namespace math
}  // namespace operators
}  // namespace paddle