run_benchmark.sh 3.1 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8
#!/usr/bin/env bash
set -xe
# 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode}
# 参数说明
function _set_params(){
    run_mode=${1:-"sp"}          # 单卡sp|多卡mp
    batch_size=${2:-"64"}
    fp_item=${3:-"fp32"}        # fp32|fp16
奔跑的蜗牛hhhhh's avatar
奔跑的蜗牛hhhhh 已提交
9
    epochs=${4:-"2"}       # 可选,如果需要修改代码提前中断
D
dongshuilong 已提交
10 11
    model_name=${5:-"model_name"}
    run_log_path="${TRAIN_LOG_DIR:-$(pwd)}/benchmark"  # TRAIN_LOG_DIR 后续QA设置该参数
奔跑的蜗牛hhhhh's avatar
奔跑的蜗牛hhhhh 已提交
12 13 14 15 16 17 18 19 20 21

    index=1
    mission_name="图像分类"           # 模型所属任务名称,具体可参考scripts/config.ini                                (必填)
    direction_id=0                    # 任务所属方向,0:CV,1:NLP,2:Rec。                                          (必填)
    skip_steps=8                      # 解析日志,有些模型前几个step耗时长,需要跳过                                  (必填)
    keyword="ips:"              # 解析日志,筛选出数据所在行的关键字                                            (必填)
    keyword_loss="loss:"       #选填
    model_mode=-1                      # 解析日志,具体参考scripts/analysis.py.                                        (必填)
    ips_unit="images/s"
    base_batch_size=$batch_size
D
dongshuilong 已提交
22 23 24 25
#   以下不用修改   
    device=${CUDA_VISIBLE_DEVICES//,/ }
    arr=(${device})
    num_gpu_devices=${#arr[*]}
D
dongshuilong 已提交
26
    log_file=${run_log_path}/clas_${model_name}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}
D
dongshuilong 已提交
27 28 29 30 31 32
}
function _train(){
    echo "Train on ${num_gpu_devices} GPUs"
    echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"

    if [ ${fp_item} = "fp32" ];then
D
dongshuilong 已提交
33
        model_config=`find ppcls/configs/ImageNet -name ${model_name}.yaml` 
D
dongshuilong 已提交
34
    else
D
dongshuilong 已提交
35
        model_config=`find ppcls/configs/ImageNet -name ${model_name}_fp16.yaml` 
D
dongshuilong 已提交
36 37 38 39 40 41 42 43 44 45
    fi

    train_cmd="-c ${model_config} -o DataLoader.Train.sampler.batch_size=${batch_size} -o Global.epochs=${epochs}"   
    case ${run_mode} in
    sp) train_cmd="python -u tools/train.py ${train_cmd}" ;;
    mp)
        train_cmd="python -m paddle.distributed.launch --log_dir=./mylog --gpus=$CUDA_VISIBLE_DEVICES tools/train.py ${train_cmd}"
        log_parse_file="mylog/workerlog.0" ;;
    *) echo "choose run_mode(sp or mp)"; exit 1;
    esac
D
dongshuilong 已提交
46
    rm -rf mylog
D
dongshuilong 已提交
47
# 以下不用修改
奔跑的蜗牛hhhhh's avatar
奔跑的蜗牛hhhhh 已提交
48
    timeout 5m ${train_cmd} > ${log_file} 2>&1
D
dongshuilong 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62
    if [ $? -ne 0 ];then
        echo -e "${model_name}, FAIL"
        export job_fail_flag=1
    else
        echo -e "${model_name}, SUCCESS"
        export job_fail_flag=0
    fi
    kill -9 `ps -ef|grep 'python'|awk '{print $2}'`
 
    if [ $run_mode = "mp" -a -d mylog ]; then
        rm ${log_file}
        cp mylog/workerlog.0 ${log_file}
    fi
}
奔跑的蜗牛hhhhh's avatar
奔跑的蜗牛hhhhh 已提交
63 64

source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在连调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开
D
dongshuilong 已提交
65
_set_params $@
奔跑的蜗牛hhhhh's avatar
奔跑的蜗牛hhhhh 已提交
66 67
_run
#_train