#!/usr/bin/env bash set -xe # 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode} # 参数说明 function _set_params(){ run_mode=${1:-"sp"} # 单卡sp|多卡mp batch_size=${2:-"64"} fp_item=${3:-"fp32"} # fp32|fp16 epochs=${4:-"2"} # 可选,如果需要修改代码提前中断 model_name=${5:-"model_name"} run_log_path="${TRAIN_LOG_DIR:-$(pwd)}/benchmark" # TRAIN_LOG_DIR 后续QA设置该参数 index=1 mission_name="图像分类" # 模型所属任务名称,具体可参考scripts/config.ini (必填) direction_id=0 # 任务所属方向,0:CV,1:NLP,2:Rec。 (必填) skip_steps=8 # 解析日志,有些模型前几个step耗时长,需要跳过 (必填) keyword="ips:" # 解析日志,筛选出数据所在行的关键字 (必填) keyword_loss="loss:" #选填 model_mode=-1 # 解析日志,具体参考scripts/analysis.py. (必填) ips_unit="images/s" base_batch_size=$batch_size # 以下不用修改 device=${CUDA_VISIBLE_DEVICES//,/ } arr=(${device}) num_gpu_devices=${#arr[*]} log_file=${run_log_path}/clas_${model_name}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices} } function _train(){ echo "Train on ${num_gpu_devices} GPUs" echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size" if [ ${fp_item} = "fp32" ];then model_config=`find ppcls/configs/ImageNet -name ${model_name}.yaml` else model_config=`find ppcls/configs/ImageNet -name ${model_name}_fp16.yaml` fi train_cmd="-c ${model_config} -o DataLoader.Train.sampler.batch_size=${batch_size} -o Global.epochs=${epochs}" case ${run_mode} in sp) train_cmd="python -u tools/train.py ${train_cmd}" ;; mp) train_cmd="python -m paddle.distributed.launch --log_dir=./mylog --gpus=$CUDA_VISIBLE_DEVICES tools/train.py ${train_cmd}" log_parse_file="mylog/workerlog.0" ;; *) echo "choose run_mode(sp or mp)"; exit 1; esac rm -rf mylog # 以下不用修改 timeout 5m ${train_cmd} > ${log_file} 2>&1 if [ $? -ne 0 ];then echo -e "${model_name}, FAIL" export job_fail_flag=1 else echo -e "${model_name}, SUCCESS" export job_fail_flag=0 fi kill -9 `ps -ef|grep 'python'|awk '{print $2}'` if [ $run_mode = "mp" -a -d mylog ]; then rm ${log_file} cp mylog/workerlog.0 ${log_file} fi } source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在连调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开 _set_params $@ _run #_train