run_benchmark.sh 2.0 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#!/usr/bin/env bash
set -xe
# 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode}
# 参数说明
function _set_params(){
    run_mode=${1:-"sp"}          # 单卡sp|多卡mp
    batch_size=${2:-"64"}
    fp_item=${3:-"fp32"}        # fp32|fp16
    epochs=${4:-"10"}       # 可选,如果需要修改代码提前中断
    model_name=${5:-"model_name"}
    run_log_path="${TRAIN_LOG_DIR:-$(pwd)}/benchmark"  # TRAIN_LOG_DIR 后续QA设置该参数
 
#   以下不用修改   
    device=${CUDA_VISIBLE_DEVICES//,/ }
    arr=(${device})
    num_gpu_devices=${#arr[*]}
D
dongshuilong 已提交
17
    log_file=${run_log_path}/clas_${model_name}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}
D
dongshuilong 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
}
function _train(){
    echo "Train on ${num_gpu_devices} GPUs"
    echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"

    if [ ${fp_item} = "fp32" ];then
    	model_config=`find ppcls/configs/ -name ${model_name}.yaml` 
    else
	model_config=`find ppcls/configs/ -name ${model_name}_fp16.yaml` 
    fi

    train_cmd="-c ${model_config} -o DataLoader.Train.sampler.batch_size=${batch_size} -o Global.epochs=${epochs}"   
    case ${run_mode} in
    sp) train_cmd="python -u tools/train.py ${train_cmd}" ;;
    mp)
        train_cmd="python -m paddle.distributed.launch --log_dir=./mylog --gpus=$CUDA_VISIBLE_DEVICES tools/train.py ${train_cmd}"
        log_parse_file="mylog/workerlog.0" ;;
    *) echo "choose run_mode(sp or mp)"; exit 1;
    esac
D
dongshuilong 已提交
37
    rm -rf mylog
D
dongshuilong 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
# 以下不用修改
    timeout 15m ${train_cmd} > ${log_file} 2>&1
    if [ $? -ne 0 ];then
        echo -e "${model_name}, FAIL"
        export job_fail_flag=1
    else
        echo -e "${model_name}, SUCCESS"
        export job_fail_flag=0
    fi
    kill -9 `ps -ef|grep 'python'|awk '{print $2}'`
 
    if [ $run_mode = "mp" -a -d mylog ]; then
        rm ${log_file}
        cp mylog/workerlog.0 ${log_file}
    fi
}
 
_set_params $@
_train