提交 86b5f9b4 编写于 作者: D dongshuilong

add version 1 for benchmark

上级 1abbc826
# benchmark使用说明
此目录所有shell脚本是为了测试PaddleClas中不同模型的速度指标,如单卡训练速度指标、多卡训练速度指标等。
## 相关脚本说明
一共有3个脚本:
- `prepare_data.sh`: 下载相应的测试数据,并配置好数据路径
- `run_benchmark.sh`: 执行单独一个训练测试的脚本,具体调用方式,可查看脚本注释
- `run_all.sh`: 执行所有训练测试的入口脚本
## 使用说明
******为了跟PaddleClas中其他的模块的执行目录保持一致,此模块的执行目录为`PaddleClas`的根目录。
### 1.准备数据
```shell
bash benchmark/prepare_data.sh
```
### 2.执行所有模型的测试
```shell
bash benchmark/run_all.sh
```
#!/bin/bash
cd dataset
rm -rf ILSVRC2012
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_little_train.tar
tar xf whole_chain_little_train.tar
ln -s whole_chain_little_train ILSVRC2012
cd ILSVRC2012
mv train.txt train_list.txt
mv val.txt val_list.txt
cd ../../
# 提供可稳定复现性能的脚本,默认在标准docker环境内py37执行: paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7 paddle=2.1.2 py=37
# 执行目录:需说明
# cd **
# 1 安装该模型需要的依赖 (如需开启优化策略请注明)
# pip install ...
# 2 拷贝该模型需要数据、预训练模型
# 3 批量运行(如不方便批量,1,2需放到单个模型中)
model_mode_list=(MobileNetV1 MobileNetV2 MobileNetV3_large_x1_0 EfficientNetB0 ShuffleNetV2_x1_0 DenseNet121 HRNet_W48_C SwinTransformer_tiny_patch4_window7_224 alt_gvt_base)
fp_item_list=(fp32)
bs_list=(32 64 96 128)
for model_mode in ${model_mode_list[@]}; do
for fp_item in ${fp_item_list[@]}; do
for bs_item in ${bs_list[@]};do
echo "index is speed, 1gpus, begin, ${model_name}"
run_mode=sp
CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode} # (5min)
sleep 10
echo "index is speed, 8gpus, run_mode is multi_process, begin, ${model_name}"
run_mode=mp
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode}
sleep 10
done
done
done
#!/usr/bin/env bash
set -xe
# 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode}
# 参数说明
function _set_params(){
run_mode=${1:-"sp"} # 单卡sp|多卡mp
batch_size=${2:-"64"}
fp_item=${3:-"fp32"} # fp32|fp16
epochs=${4:-"10"} # 可选,如果需要修改代码提前中断
model_name=${5:-"model_name"}
run_log_path="${TRAIN_LOG_DIR:-$(pwd)}/benchmark" # TRAIN_LOG_DIR 后续QA设置该参数
# 以下不用修改
device=${CUDA_VISIBLE_DEVICES//,/ }
arr=(${device})
num_gpu_devices=${#arr[*]}
log_file=${run_log_path}/${model_name}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}
}
function _train(){
echo "Train on ${num_gpu_devices} GPUs"
echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"
if [ ${fp_item} = "fp32" ];then
model_config=`find ppcls/configs/ -name ${model_name}.yaml`
else
model_config=`find ppcls/configs/ -name ${model_name}_fp16.yaml`
fi
train_cmd="-c ${model_config} -o DataLoader.Train.sampler.batch_size=${batch_size} -o Global.epochs=${epochs}"
case ${run_mode} in
sp) train_cmd="python -u tools/train.py ${train_cmd}" ;;
mp)
train_cmd="python -m paddle.distributed.launch --log_dir=./mylog --gpus=$CUDA_VISIBLE_DEVICES tools/train.py ${train_cmd}"
log_parse_file="mylog/workerlog.0" ;;
*) echo "choose run_mode(sp or mp)"; exit 1;
esac
# 以下不用修改
timeout 15m ${train_cmd} > ${log_file} 2>&1
if [ $? -ne 0 ];then
echo -e "${model_name}, FAIL"
export job_fail_flag=1
else
echo -e "${model_name}, SUCCESS"
export job_fail_flag=0
fi
kill -9 `ps -ef|grep 'python'|awk '{print $2}'`
if [ $run_mode = "mp" -a -d mylog ]; then
rm ${log_file}
cp mylog/workerlog.0 ${log_file}
fi
}
_set_params $@
_train
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册