efficientnet.py 28.4 KB
Newer Older
1
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
2 3 4 5 6
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
7
import math
W
WuHaobo 已提交
8 9 10 11 12
import collections
import re
import copy

__all__ = [
13 14 15
    'EfficientNet', 'EfficientNetB0_small', 'EfficientNetB0', 'EfficientNetB1',
    'EfficientNetB2', 'EfficientNetB3', 'EfficientNetB4', 'EfficientNetB5',
    'EfficientNetB6', 'EfficientNetB7'
W
WuHaobo 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
]

GlobalParams = collections.namedtuple('GlobalParams', [
    'batch_norm_momentum',
    'batch_norm_epsilon',
    'dropout_rate',
    'num_classes',
    'width_coefficient',
    'depth_coefficient',
    'depth_divisor',
    'min_depth',
    'drop_connect_rate',
])

BlockArgs = collections.namedtuple('BlockArgs', [
    'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
    'expand_ratio', 'id_skip', 'stride', 'se_ratio'
])

GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None, ) * len(BlockArgs._fields)


def efficientnet_params(model_name):
    """ Map EfficientNet model name to parameter coefficients. """
    params_dict = {
        # Coefficients:   width,depth,resolution,dropout
        'efficientnet-b0': (1.0, 1.0, 224, 0.2),
        'efficientnet-b1': (1.0, 1.1, 240, 0.2),
        'efficientnet-b2': (1.1, 1.2, 260, 0.3),
        'efficientnet-b3': (1.2, 1.4, 300, 0.3),
        'efficientnet-b4': (1.4, 1.8, 380, 0.4),
        'efficientnet-b5': (1.6, 2.2, 456, 0.4),
        'efficientnet-b6': (1.8, 2.6, 528, 0.5),
        'efficientnet-b7': (2.0, 3.1, 600, 0.5),
    }
    return params_dict[model_name]


def efficientnet(width_coefficient=None,
                 depth_coefficient=None,
                 dropout_rate=0.2,
                 drop_connect_rate=0.2):
    """ Get block arguments according to parameter and coefficients. """
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        dropout_rate=dropout_rate,
        drop_connect_rate=drop_connect_rate,
        num_classes=1000,
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        depth_divisor=8,
        min_depth=None)

    return blocks_args, global_params


def get_model_params(model_name, override_params):
    """ Get the block args and global params for a given model """
    if model_name.startswith('efficientnet'):
        w, d, _, p = efficientnet_params(model_name)
        blocks_args, global_params = efficientnet(
            width_coefficient=w, depth_coefficient=d, dropout_rate=p)
    else:
        raise NotImplementedError('model name is not pre-defined: %s' %
                                  model_name)
    if override_params:
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


def round_filters(filters, global_params):
    """ Calculate and round number of filters based on depth multiplier. """
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor
    new_filters = max(min_depth,
                      int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params):
    """ Round number of filters based on depth multiplier. """
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    return int(math.ceil(multiplier * repeats))


class BlockDecoder(object):
littletomatodonkey's avatar
littletomatodonkey 已提交
124 125 126
    """
    Block Decoder, straight from the official TensorFlow repository.
    """
W
WuHaobo 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

    @staticmethod
    def _decode_block_string(block_string):
        """ Gets a block through a string notation of arguments. """
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
littletomatodonkey's avatar
littletomatodonkey 已提交
142
        cond_1 = ('s' in options and len(options['s']) == 1)
S
shippingwang 已提交
143 144
        cond_2 = ((len(options['s']) == 2) and
                  (options['s'][0] == options['s'][1]))
littletomatodonkey's avatar
littletomatodonkey 已提交
145
        assert (cond_1 or cond_2)
W
WuHaobo 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

        return BlockArgs(
            kernel_size=int(options['k']),
            num_repeat=int(options['r']),
            input_filters=int(options['i']),
            output_filters=int(options['o']),
            expand_ratio=int(options['e']),
            id_skip=('noskip' not in block_string),
            se_ratio=float(options['se']) if 'se' in options else None,
            stride=[int(options['s'][0])])

    @staticmethod
    def _encode_block_string(block):
        """Encodes a block to a string."""
        args = [
            'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d%d' %
            (block.strides[0], block.strides[1]), 'e%s' % block.expand_ratio,
            'i%d' % block.input_filters, 'o%d' % block.output_filters
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list):
        """
littletomatodonkey's avatar
littletomatodonkey 已提交
174
        Decode a list of string notations to specify blocks in the network.
W
WuHaobo 已提交
175

littletomatodonkey's avatar
littletomatodonkey 已提交
176 177 178
        string_list: list of strings, each string is a notation of block
        return
            list of BlockArgs namedtuples of block args
W
WuHaobo 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """
        Encodes a list of BlockArgs to a list of strings.

        :param blocks_args: a list of BlockArgs namedtuples of block args
        :return: a list of strings, each string is a notation of block
        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
def initial_type(name, use_bias=False):
    param_attr = ParamAttr(name=name + "_weights")
    if use_bias:
        bias_attr = ParamAttr(name=name + "_offset")
    else:
        bias_attr = False
    return param_attr, bias_attr


def init_batch_norm_layer(name="batch_norm"):
    param_attr = ParamAttr(name=name + "_scale")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def init_fc_layer(name="fc"):
    param_attr = ParamAttr(name=name + "_weights")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def cal_padding(img_size, stride, filter_size, dilation=1):
    """Calculate padding size."""
    if img_size % stride == 0:
        out_size = max(filter_size - stride, 0)
    else:
        out_size = max(filter_size - (img_size % stride), 0)
    return out_size // 2, out_size - out_size // 2


inp_shape = {
    "b0_small": [224, 112, 112, 56, 28, 14, 14, 7],
    "b0": [224, 112, 112, 56, 28, 14, 14, 7],
    "b1": [240, 120, 120, 60, 30, 15, 15, 8],
    "b2": [260, 130, 130, 65, 33, 17, 17, 9],
    "b3": [300, 150, 150, 75, 38, 19, 19, 10],
    "b4": [380, 190, 190, 95, 48, 24, 24, 12],
    "b5": [456, 228, 228, 114, 57, 29, 29, 15],
    "b6": [528, 264, 264, 132, 66, 33, 33, 17],
    "b7": [600, 300, 300, 150, 75, 38, 38, 19]
}


def _drop_connect(inputs, prob, is_test):
    if is_test:
        return inputs
    keep_prob = 1.0 - prob
littletomatodonkey's avatar
littletomatodonkey 已提交
247 248 249
    inputs_shape = paddle.shape(inputs)
    random_tensor = keep_prob + paddle.rand(shape=[inputs_shape[0], 1, 1, 1])
    binary_tensor = paddle.floor(random_tensor)
250 251 252 253
    output = inputs / keep_prob * binary_tensor
    return output


littletomatodonkey's avatar
littletomatodonkey 已提交
254
class Conv2ds(nn.Layer):
255 256 257 258 259 260 261 262 263 264 265 266 267
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=None,
                 name="conv2d",
                 act=None,
                 use_bias=False,
                 padding_type=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
268
        super(Conv2ds, self).__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
269 270
        assert act in [None, "swish", "sigmoid"]
        self.act = act
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

        param_attr, bias_attr = initial_type(name=name, use_bias=use_bias)

        def get_padding(filter_size, stride=1, dilation=1):
            padding = ((stride - 1) + dilation * (filter_size - 1)) // 2
            return padding

        inps = 1 if model_name == None and cur_stage == None else inp_shape[
            model_name][cur_stage]
        self.need_crop = False
        if padding_type == "SAME":
            top_padding, bottom_padding = cal_padding(inps, stride,
                                                      filter_size)
            left_padding, right_padding = cal_padding(inps, stride,
                                                      filter_size)
            height_padding = bottom_padding
            width_padding = right_padding
            if top_padding != bottom_padding or left_padding != right_padding:
                height_padding = top_padding + stride
                width_padding = left_padding + stride
                self.need_crop = True
            padding = [height_padding, width_padding]
        elif padding_type == "VALID":
            height_padding = 0
            width_padding = 0
            padding = [height_padding, width_padding]
        elif padding_type == "DYNAMIC":
            padding = get_padding(filter_size, stride)
        else:
            padding = padding_type

littletomatodonkey's avatar
littletomatodonkey 已提交
302 303
        groups = 1 if groups is None else groups
        self._conv = Conv2d(
304 305 306 307 308
            input_channels,
            output_channels,
            filter_size,
            groups=groups,
            stride=stride,
littletomatodonkey's avatar
littletomatodonkey 已提交
309
            #             act=act,
310
            padding=padding,
littletomatodonkey's avatar
littletomatodonkey 已提交
311
            weight_attr=param_attr,
312 313 314 315
            bias_attr=bias_attr)

    def forward(self, inputs):
        x = self._conv(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
316 317 318 319 320
        if self.act == "swish":
            x = F.swish(x)
        elif self.act == "sigmoid":
            x = F.sigmoid(x)

321 322 323 324 325
        if self.need_crop:
            x = x[:, :, 1:, 1:]
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
326
class ConvBNLayer(nn.Layer):
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    def __init__(self,
                 input_channels,
                 filter_size,
                 output_channels,
                 stride=1,
                 num_groups=1,
                 padding_type="SAME",
                 conv_act=None,
                 bn_act="swish",
                 use_bn=True,
                 use_bias=False,
                 name=None,
                 conv_name=None,
                 bn_name=None,
                 model_name=None,
                 cur_stage=None):
        super(ConvBNLayer, self).__init__()

W
fix  
wqz960 已提交
345
        self._conv = Conv2ds(
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
            input_channels=input_channels,
            output_channels=output_channels,
            filter_size=filter_size,
            stride=stride,
            groups=num_groups,
            act=conv_act,
            padding_type=padding_type,
            name=conv_name,
            use_bias=use_bias,
            model_name=model_name,
            cur_stage=cur_stage)
        self.use_bn = use_bn
        if use_bn is True:
            bn_name = name + bn_name
            param_attr, bias_attr = init_batch_norm_layer(bn_name)

            self._bn = BatchNorm(
                num_channels=output_channels,
                act=bn_act,
                momentum=0.99,
                epsilon=0.001,
                moving_mean_name=bn_name + "_mean",
                moving_variance_name=bn_name + "_variance",
                param_attr=param_attr,
                bias_attr=bias_attr)

    def forward(self, inputs):
        if self.use_bn:
            x = self._conv(inputs)
            x = self._bn(x)
            return x
        else:
            return self._conv(inputs)


littletomatodonkey's avatar
littletomatodonkey 已提交
381
class ExpandConvNorm(nn.Layer):
382 383 384 385 386 387 388
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
389
        super(ExpandConvNorm, self).__init__()
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

        self.oup = block_args.input_filters * block_args.expand_ratio
        self.expand_ratio = block_args.expand_ratio

        if self.expand_ratio != 1:
            self._conv = ConvBNLayer(
                input_channels,
                1,
                self.oup,
                bn_act=None,
                padding_type=padding_type,
                name=name,
                conv_name=name + "_expand_conv",
                bn_name="_bn0",
                model_name=model_name,
                cur_stage=cur_stage)

    def forward(self, inputs):
        if self.expand_ratio != 1:
            return self._conv(inputs)
        else:
            return inputs


littletomatodonkey's avatar
littletomatodonkey 已提交
414
class DepthwiseConvNorm(nn.Layer):
415 416 417 418 419 420 421
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
wqz960 已提交
422
        super(DepthwiseConvNorm, self).__init__()
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

        self.k = block_args.kernel_size
        self.s = block_args.stride
        if isinstance(self.s, list) or isinstance(self.s, tuple):
            self.s = self.s[0]
        oup = block_args.input_filters * block_args.expand_ratio

        self._conv = ConvBNLayer(
            input_channels,
            self.k,
            oup,
            self.s,
            num_groups=input_channels,
            bn_act=None,
            padding_type=padding_type,
            name=name,
            conv_name=name + "_depthwise_conv",
            bn_name="_bn1",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


littletomatodonkey's avatar
littletomatodonkey 已提交
448
class ProjectConvNorm(nn.Layer):
449 450 451 452 453 454 455
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
wqz960 已提交
456
        super(ProjectConvNorm, self).__init__()
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

        final_oup = block_args.output_filters

        self._conv = ConvBNLayer(
            input_channels,
            1,
            final_oup,
            bn_act=None,
            padding_type=padding_type,
            name=name,
            conv_name=name + "_project_conv",
            bn_name="_bn2",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


littletomatodonkey's avatar
littletomatodonkey 已提交
476
class SEBlock(nn.Layer):
477 478 479 480 481 482 483 484
    def __init__(self,
                 input_channels,
                 num_squeezed_channels,
                 oup,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
485
        super(SEBlock, self).__init__()
486

littletomatodonkey's avatar
littletomatodonkey 已提交
487
        self._pool = AdaptiveAvgPool2d(1)
W
fix  
wqz960 已提交
488
        self._conv1 = Conv2ds(
489 490 491 492 493 494 495 496
            input_channels,
            num_squeezed_channels,
            1,
            use_bias=True,
            padding_type=padding_type,
            act="swish",
            name=name + "_se_reduce")

W
fix  
wqz960 已提交
497
        self._conv2 = Conv2ds(
498 499 500
            num_squeezed_channels,
            oup,
            1,
littletomatodonkey's avatar
littletomatodonkey 已提交
501
            act="sigmoid",
502 503 504 505 506 507 508 509
            use_bias=True,
            padding_type=padding_type,
            name=name + "_se_expand")

    def forward(self, inputs):
        x = self._pool(inputs)
        x = self._conv1(x)
        x = self._conv2(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
510
        return paddle.multiply(inputs, x)
511 512


littletomatodonkey's avatar
littletomatodonkey 已提交
513
class MbConvBlock(nn.Layer):
514 515 516 517 518 519 520 521 522 523
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 use_se,
                 name=None,
                 drop_connect_rate=None,
                 is_test=False,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
524
        super(MbConvBlock, self).__init__()
525 526 527 528 529 530 531 532 533 534 535

        oup = block_args.input_filters * block_args.expand_ratio
        self.block_args = block_args
        self.has_se = use_se and (block_args.se_ratio is not None) and (
            0 < block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip
        self.expand_ratio = block_args.expand_ratio
        self.drop_connect_rate = drop_connect_rate
        self.is_test = is_test

        if self.expand_ratio != 1:
W
fix  
wqz960 已提交
536
            self._ecn = ExpandConvNorm(
537 538 539 540 541 542 543
                input_channels,
                block_args,
                padding_type=padding_type,
                name=name,
                model_name=model_name,
                cur_stage=cur_stage)

W
wqz960 已提交
544
        self._dcn = DepthwiseConvNorm(
545 546 547 548 549 550 551 552 553 554
            input_channels * block_args.expand_ratio,
            block_args,
            padding_type=padding_type,
            name=name,
            model_name=model_name,
            cur_stage=cur_stage)

        if self.has_se:
            num_squeezed_channels = max(
                1, int(block_args.input_filters * block_args.se_ratio))
W
fix  
wqz960 已提交
555
            self._se = SEBlock(
556 557 558 559 560 561 562 563
                input_channels * block_args.expand_ratio,
                num_squeezed_channels,
                oup,
                padding_type=padding_type,
                name=name,
                model_name=model_name,
                cur_stage=cur_stage)

W
wqz960 已提交
564
        self._pcn = ProjectConvNorm(
565 566 567 568 569 570 571 572 573 574 575
            input_channels * block_args.expand_ratio,
            block_args,
            padding_type=padding_type,
            name=name,
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        x = inputs
        if self.expand_ratio != 1:
            x = self._ecn(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
576
            x = F.swish(x)
577
        x = self._dcn(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
578
        x = F.swish(x)
579 580 581
        if self.has_se:
            x = self._se(x)
        x = self._pcn(x)
W
fix  
wqz960 已提交
582
        if self.id_skip and \
littletomatodonkey's avatar
littletomatodonkey 已提交
583 584
                self.block_args.stride == 1 and \
                self.block_args.input_filters == self.block_args.output_filters:
585 586
            if self.drop_connect_rate:
                x = _drop_connect(x, self.drop_connect_rate, self.is_test)
littletomatodonkey's avatar
littletomatodonkey 已提交
587
            x = paddle.elementwise_add(x, inputs)
588 589 590
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
591
class ConvStemNorm(nn.Layer):
592 593 594 595 596 597 598
    def __init__(self,
                 input_channels,
                 padding_type,
                 _global_params,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
599
        super(ConvStemNorm, self).__init__()
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

        output_channels = round_filters(32, _global_params)
        self._conv = ConvBNLayer(
            input_channels,
            filter_size=3,
            output_channels=output_channels,
            stride=2,
            bn_act=None,
            padding_type=padding_type,
            name="",
            conv_name="_conv_stem",
            bn_name="_bn0",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


littletomatodonkey's avatar
littletomatodonkey 已提交
619
class ExtractFeatures(nn.Layer):
620 621 622 623 624 625 626 627
    def __init__(self,
                 input_channels,
                 _block_args,
                 _global_params,
                 padding_type,
                 use_se,
                 is_test,
                 model_name=None):
W
fix  
wqz960 已提交
628
        super(ExtractFeatures, self).__init__()
629 630 631

        self._global_params = _global_params

W
fix  
wqz960 已提交
632
        self._conv_stem = ConvStemNorm(
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
            input_channels,
            padding_type=padding_type,
            _global_params=_global_params,
            model_name=model_name,
            cur_stage=0)

        self.block_args_copy = copy.deepcopy(_block_args)
        idx = 0
        block_size = 0
        for block_arg in self.block_args_copy:
            block_arg = block_arg._replace(
                input_filters=round_filters(block_arg.input_filters,
                                            _global_params),
                output_filters=round_filters(block_arg.output_filters,
                                             _global_params),
                num_repeat=round_repeats(block_arg.num_repeat, _global_params))
            block_size += 1
            for _ in range(block_arg.num_repeat - 1):
                block_size += 1

        self.conv_seq = []
        cur_stage = 1
        for block_args in _block_args:
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters,
                                            _global_params),
                output_filters=round_filters(block_args.output_filters,
                                             _global_params),
                num_repeat=round_repeats(block_args.num_repeat,
                                         _global_params))

            drop_connect_rate = self._global_params.drop_connect_rate if not is_test else 0
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / block_size

            _mc_block = self.add_sublayer(
                "_blocks." + str(idx) + ".",
W
fix  
wqz960 已提交
670
                MbConvBlock(
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                    block_args.input_filters,
                    block_args=block_args,
                    padding_type=padding_type,
                    use_se=use_se,
                    name="_blocks." + str(idx) + ".",
                    drop_connect_rate=drop_connect_rate,
                    model_name=model_name,
                    cur_stage=cur_stage))
            self.conv_seq.append(_mc_block)
            idx += 1
            if block_args.num_repeat > 1:
                block_args = block_args._replace(
                    input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                drop_connect_rate = self._global_params.drop_connect_rate if not is_test else 0
                if drop_connect_rate:
                    drop_connect_rate *= float(idx) / block_size
                _mc_block = self.add_sublayer(
                    "block." + str(idx) + ".",
W
fix  
wqz960 已提交
690
                    MbConvBlock(
691 692 693 694 695 696 697 698 699 700 701 702 703 704
                        block_args.input_filters,
                        block_args,
                        padding_type=padding_type,
                        use_se=use_se,
                        name="_blocks." + str(idx) + ".",
                        drop_connect_rate=drop_connect_rate,
                        model_name=model_name,
                        cur_stage=cur_stage))
                self.conv_seq.append(_mc_block)
                idx += 1
            cur_stage += 1

    def forward(self, inputs):
        x = self._conv_stem(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
705
        x = F.swish(x)
706 707 708 709 710
        for _mc_block in self.conv_seq:
            x = _mc_block(x)
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
711
class EfficientNet(nn.Layer):
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    def __init__(self,
                 name="b0",
                 is_test=True,
                 padding_type="SAME",
                 override_params=None,
                 use_se=True,
                 class_dim=1000):
        super(EfficientNet, self).__init__()

        model_name = 'efficientnet-' + name
        self.name = name
        self._block_args, self._global_params = get_model_params(
            model_name, override_params)
        self.padding_type = padding_type
        self.use_se = use_se
        self.is_test = is_test

W
fix  
wqz960 已提交
729
        self._ef = ExtractFeatures(
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
            3,
            self._block_args,
            self._global_params,
            self.padding_type,
            self.use_se,
            self.is_test,
            model_name=self.name)

        output_channels = round_filters(1280, self._global_params)
        if name == "b0_small" or name == "b0" or name == "b1":
            oup = 320
        elif name == "b2":
            oup = 352
        elif name == "b3":
            oup = 384
        elif name == "b4":
            oup = 448
        elif name == "b5":
            oup = 512
        elif name == "b6":
            oup = 576
        elif name == "b7":
            oup = 640
        self._conv = ConvBNLayer(
            oup,
            1,
            output_channels,
            bn_act="swish",
            padding_type=self.padding_type,
            name="",
            conv_name="_conv_head",
            bn_name="_bn1",
            model_name=self.name,
            cur_stage=7)
littletomatodonkey's avatar
littletomatodonkey 已提交
764
        self._pool = AdaptiveAvgPool2d(1)
765 766 767

        if self._global_params.dropout_rate:
            self._drop = Dropout(
littletomatodonkey's avatar
littletomatodonkey 已提交
768
                p=self._global_params.dropout_rate, mode="upscale_in_train")
769 770 771 772 773

        param_attr, bias_attr = init_fc_layer("_fc")
        self._fc = Linear(
            output_channels,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
774
            weight_attr=param_attr,
775 776 777 778 779 780 781 782
            bias_attr=bias_attr)

    def forward(self, inputs):
        x = self._ef(inputs)
        x = self._conv(x)
        x = self._pool(x)
        if self._global_params.dropout_rate:
            x = self._drop(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
783
        x = paddle.squeeze(x, axis=[2, 3])
784 785 786 787 788 789 790
        x = self._fc(x)
        return x


def EfficientNetB0_small(is_test=True,
                         padding_type='DYNAMIC',
                         override_params=None,
W
wqz960 已提交
791 792
                         use_se=False,
                         **args):
W
WuHaobo 已提交
793 794
    model = EfficientNet(
        name='b0',
W
fix  
wqz960 已提交
795
        is_test=is_test,
W
WuHaobo 已提交
796 797
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
798 799
        use_se=use_se,
        **args)
W
WuHaobo 已提交
800 801 802
    return model


803 804 805
def EfficientNetB0(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
806 807
                   use_se=True,
                   **args):
littletomatodonkey's avatar
littletomatodonkey 已提交
808 809
    model = EfficientNet(
        name='b0',
W
fix  
wqz960 已提交
810
        is_test=is_test,
littletomatodonkey's avatar
littletomatodonkey 已提交
811 812
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
813 814
        use_se=use_se,
        **args)
littletomatodonkey's avatar
littletomatodonkey 已提交
815 816 817
    return model


W
WuHaobo 已提交
818 819 820
def EfficientNetB1(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
821 822
                   use_se=True,
                   **args):
W
WuHaobo 已提交
823 824
    model = EfficientNet(
        name='b1',
W
fix  
wqz960 已提交
825
        is_test=is_test,
W
WuHaobo 已提交
826 827
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
828 829
        use_se=use_se,
        **args)
W
WuHaobo 已提交
830 831 832 833 834 835
    return model


def EfficientNetB2(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
836 837
                   use_se=True,
                   **args):
W
WuHaobo 已提交
838 839
    model = EfficientNet(
        name='b2',
W
fix  
wqz960 已提交
840
        is_test=is_test,
W
WuHaobo 已提交
841 842
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
843 844
        use_se=use_se,
        **args)
W
WuHaobo 已提交
845 846 847 848 849 850
    return model


def EfficientNetB3(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
851 852
                   use_se=True,
                   **args):
W
WuHaobo 已提交
853 854
    model = EfficientNet(
        name='b3',
W
fix  
wqz960 已提交
855
        is_test=is_test,
W
WuHaobo 已提交
856 857
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
858 859
        use_se=use_se,
        **args)
W
WuHaobo 已提交
860 861 862 863 864 865
    return model


def EfficientNetB4(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
866 867
                   use_se=True,
                   **args):
W
WuHaobo 已提交
868 869
    model = EfficientNet(
        name='b4',
W
fix  
wqz960 已提交
870
        is_test=is_test,
W
WuHaobo 已提交
871 872
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
873 874
        use_se=use_se,
        **args)
W
WuHaobo 已提交
875 876 877 878 879 880
    return model


def EfficientNetB5(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
881 882
                   use_se=True,
                   **args):
W
WuHaobo 已提交
883 884
    model = EfficientNet(
        name='b5',
W
fix  
wqz960 已提交
885
        is_test=is_test,
W
WuHaobo 已提交
886 887
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
888 889
        use_se=use_se,
        **args)
W
WuHaobo 已提交
890 891 892 893 894 895
    return model


def EfficientNetB6(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
896 897
                   use_se=True,
                   **args):
W
WuHaobo 已提交
898 899
    model = EfficientNet(
        name='b6',
W
fix  
wqz960 已提交
900
        is_test=is_test,
W
WuHaobo 已提交
901 902
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
903 904
        use_se=use_se,
        **args)
W
WuHaobo 已提交
905 906 907 908 909 910
    return model


def EfficientNetB7(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
911 912
                   use_se=True,
                   **args):
W
WuHaobo 已提交
913 914
    model = EfficientNet(
        name='b7',
W
fix  
wqz960 已提交
915
        is_test=is_test,
W
WuHaobo 已提交
916 917
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
918 919
        use_se=use_se,
        **args)
littletomatodonkey's avatar
littletomatodonkey 已提交
920
    return model